MHB A curvature problem (differentiation)

Click For Summary
In the discussion on curvature in the Euclidean plane, the relationship between the curvature $$\kappa$$ of a differentiable function $$y=f(x)$$ and the angle $$\phi$$ formed by the tangent line at a point is established. The curvature is defined as the rate of change of $$\phi$$ with respect to arc length $$s$$, leading to the formula $$\kappa = \frac{d\phi}{ds}$$. The participants derive that $$\kappa$$ can be expressed as $$\kappa = \frac{ \left[ 1+ \left( \frac{dy}{dx} \right)^2 \right]^{3/2} }{ \frac{d^2y}{dx^2} }$$. The discussion also clarifies the differentiation process, linking the second derivative of the function to the angle's derivative and the arc length. Ultimately, the derived formula for curvature is confirmed as $$\kappa= \frac{f''(x)}{\left [1+f'(x)^2 \right]^{3/2}}$$.
DreamWeaver
Messages
297
Reaction score
0
In the Euclidean plane, assume a differentiable function $$y=f(x)$$ exists. At any given point, say $$(x_0,y_0)$$, the line tangential to $$y=f(x)$$ at this point intersects the x-axis at an angle $$\phi$$.

The curvature of this curve, $$\kappa$$, is the rate of change of $$\phi$$ with respect to arc length, $$s$$:

$$\kappa = \frac{d\phi}{ds} $$Problem:Prove that

$$\kappa = \frac{ \left[ 1+ \left( \frac{dy}{dx} \right)^2 \right]^{3/2} }{ \frac{d^2y}{dx^2} }$$Or equivalently

$$\kappa = \frac{\left[ 1+\left( f'(x) \right)^2 \right]^{3/2}}{f''(x)}$$
 
Mathematics news on Phys.org
Here's an optional, visual aid, for a generic curve. Just in case... (Bandit)

 

Attachments

  • curvature_1.JPG
    curvature_1.JPG
    6.8 KB · Views: 126
Isn't

$$\kappa = \frac{f''(x)}{ \left [ 1+ (f'(x))^2 \right ]^{3/2}}$$?

The solution follows.

First, $$\frac{d \varphi}{ds}= \frac{\frac{ d \varphi}{dx}}{ \frac{ds}{dx}}$$.

If the tangent line to f(x) at $$x=x_0$$ intersects the x-axis at an angle $$\varphi$$, then $$f'(x_0) = \tan \varphi$$. Differentiating both sides with respect to $$x_0$$ and assuming $$\varphi$$ is a function of $$x_0$$ gives $$f''(x_0)=\varphi' \sec^2 \varphi $$. Solving and remembering that $$1+\tan^2 (x)=\sec^2 (x)$$, we have

$$\frac{f''(x_0)}{1+f'(x_0)^2}= \varphi'=\frac{d \varphi}{dx}$$.

Now, remembering the definition of arc length,

[math]\frac{ds}{dx}= \sqrt{1+f'(x)^2}[/math],

substituting into the first equation, and dropping subscripts gives our result,

$$\kappa= \frac{d \varphi}{ds}= \frac{f''(x)}{\left [1+f'(x)^2 \right]^{3/2}}$$.
 
Last edited:
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 3 ·
Replies
3
Views
818
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
6K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 8 ·
Replies
8
Views
3K