MHB A curvature problem (differentiation)

AI Thread Summary
In the discussion on curvature in the Euclidean plane, the relationship between the curvature $$\kappa$$ of a differentiable function $$y=f(x)$$ and the angle $$\phi$$ formed by the tangent line at a point is established. The curvature is defined as the rate of change of $$\phi$$ with respect to arc length $$s$$, leading to the formula $$\kappa = \frac{d\phi}{ds}$$. The participants derive that $$\kappa$$ can be expressed as $$\kappa = \frac{ \left[ 1+ \left( \frac{dy}{dx} \right)^2 \right]^{3/2} }{ \frac{d^2y}{dx^2} }$$. The discussion also clarifies the differentiation process, linking the second derivative of the function to the angle's derivative and the arc length. Ultimately, the derived formula for curvature is confirmed as $$\kappa= \frac{f''(x)}{\left [1+f'(x)^2 \right]^{3/2}}$$.
DreamWeaver
Messages
297
Reaction score
0
In the Euclidean plane, assume a differentiable function $$y=f(x)$$ exists. At any given point, say $$(x_0,y_0)$$, the line tangential to $$y=f(x)$$ at this point intersects the x-axis at an angle $$\phi$$.

The curvature of this curve, $$\kappa$$, is the rate of change of $$\phi$$ with respect to arc length, $$s$$:

$$\kappa = \frac{d\phi}{ds} $$Problem:Prove that

$$\kappa = \frac{ \left[ 1+ \left( \frac{dy}{dx} \right)^2 \right]^{3/2} }{ \frac{d^2y}{dx^2} }$$Or equivalently

$$\kappa = \frac{\left[ 1+\left( f'(x) \right)^2 \right]^{3/2}}{f''(x)}$$
 
Mathematics news on Phys.org
Here's an optional, visual aid, for a generic curve. Just in case... (Bandit)

 

Attachments

  • curvature_1.JPG
    curvature_1.JPG
    6.8 KB · Views: 116
Isn't

$$\kappa = \frac{f''(x)}{ \left [ 1+ (f'(x))^2 \right ]^{3/2}}$$?

The solution follows.

First, $$\frac{d \varphi}{ds}= \frac{\frac{ d \varphi}{dx}}{ \frac{ds}{dx}}$$.

If the tangent line to f(x) at $$x=x_0$$ intersects the x-axis at an angle $$\varphi$$, then $$f'(x_0) = \tan \varphi$$. Differentiating both sides with respect to $$x_0$$ and assuming $$\varphi$$ is a function of $$x_0$$ gives $$f''(x_0)=\varphi' \sec^2 \varphi $$. Solving and remembering that $$1+\tan^2 (x)=\sec^2 (x)$$, we have

$$\frac{f''(x_0)}{1+f'(x_0)^2}= \varphi'=\frac{d \varphi}{dx}$$.

Now, remembering the definition of arc length,

[math]\frac{ds}{dx}= \sqrt{1+f'(x)^2}[/math],

substituting into the first equation, and dropping subscripts gives our result,

$$\kappa= \frac{d \varphi}{ds}= \frac{f''(x)}{\left [1+f'(x)^2 \right]^{3/2}}$$.
 
Last edited:
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Back
Top