A little notation help, on quantum coding

monica1977
Messages
6
Reaction score
0
Hi, I wanted to know how to solve this question , its not a homework question i am really asking for , more the general way to solve these types of questions... I don't understand how it forms into another matrix. I have the answer attached as well , but could some one explain ? (I don't think the matrix A is needed , i just copied it as well )

Cheers for any help guys :)
 

Attachments

  • qq.jpg
    qq.jpg
    8.9 KB · Views: 441
  • Answer.jpg
    Answer.jpg
    1.7 KB · Views: 423
Physics news on Phys.org
Do you know what \langle v_2| represents? It is the conjugate transpose of |v_2 \rangle. So \langle v_2|=\frac{1}{\sqrt{2}}(-i,-1).

Therefore
<br /> |v_1 \rangle \langle v_2|=\frac{1}{2} \binom{i}{1}(-i,-1)<br />
 
Last edited:
aint <v2 is the transpose of v2> ?
 
Almost, we are working with complex vectors here so it is the conjugate transpose. Do you know how to form a matrix from the the expression in my previous post?
 
To represent an operator as a matrix, you must choose a basis. In this case, the question presumably wants you to write it in the same basis that |v_1\rangle and |v_2\rangle are given in. You are given that

|v_1\rangle = \frac{1}{\sqrt{2}} ( i|1\rangle + |2\rangle)

|v_2\rangle = \frac{1}{\sqrt{2}} (i|1\rangle -|2\rangle)

The operator is

|v_1\rangle\langle v_2|.

The matrix elements of this operator in the basis |1\rangle, |2\rangle are

A_{ij} = \langle i|v_1\rangle\langle v_2|j\rangle.

For example, the (1,1) element of the matrix will be

A_{11} = \langle 1|v_1\rangle\langle v_2|1\rangle = \langle 1|v_1\rangle \langle 1 | v_2 \rangle ^{*} = \frac{i}{\sqrt{2}}\frac{-i}{\sqrt{2}} = \frac{1}{2}.
 
Last edited:
Cheers Cyosis I understand that better now , but i still don't understand how what you wrote is i matrix and not a scalar ? , can u show me for a general case ? , or just show me how the answer is acheived ?
 
Last edited:
To calculate |v_1 \rangle \langle v_2|=\frac{1}{2} \binom{i}{1}(-i,-1) just think of it as two matrices. You multiply the first row of v1 (i) with the first column of v2 (-i).

What you will get is this:
\frac{1}{2}\left( \begin{matrix} i*-i &amp; i*-1 \\ 1*-i &amp; 1*-1 \end{matrix}\right)= \frac{1}{2}\left( \begin{matrix} 1 &amp; -i \\ -i &amp; -1 \end{matrix}\right)
 
Hi I just wanted to ask quickly , does this only apply to only complex vectors ? , what if they was all real values ? , is it still the same then ?
 
Last edited:
Any one ?
 
  • #10
Yes it's the same. The only difference is that you usually take the normal transpose for real valued vectors since there is nothing to conjugate.
 
  • #11
Cyosis said:
Yes it's the same. The only difference is that you usually take the normal transpose for real valued vectors since there is nothing to conjugate.
Or the way I like to think about it, the conjugate transpose for real vectors (or matrices) is the normal transpose, since the conjugate of a real number is just the same number.
 
Back
Top