(adsbygoogle = window.adsbygoogle || []).push({}); 1. The problem statement, all variables and given/known data

A proton and an alpha particle (q = +2.00e, m = 4.00u ) are fired directly toward each other from far away, each with an initial speed of 0.141c. What is their distance of closest approach, as measured between their centers? (Hint: There are two conserved quantities. Make use of both.)

2. Relevant equations

Enet1 = Enet2

Kp + Ka = Kq1q2/r

Then solve for "r".

3. The attempt at a solution

I would figure that you could use conservation of energy in the sense that the energy of the system initially is the kinetic energies of the two particles combined (Enet1 = Kp + Ka). At the point of closest approach, their speeds should be zero, and hence Enet2 = Uelec = Kq1q2/r. From here it should be straightforward:

Enet1 = Enet2

Kp + Ka = Kq1q2/r

Then solve for "r".

However, this is incorrect. Perhaps my assumption that the alpha particle (4 times the mass, 2 times the charge) stops completely is wrong. At this point, I really have no idea.

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Homework Help: A little question causing big problems

**Physics Forums | Science Articles, Homework Help, Discussion**