MHB A math proof within a question about homogeneous Poisson process

Click For Summary
The discussion focuses on proving that a specific simulation generates a homogeneous Poisson process with rate λ over the interval [0, T]. The simulation involves two steps: sampling m from a Poisson distribution with mean λT, and then sampling m events uniformly from [0, T]. The proof requires demonstrating that the probability of k events occurring in any interval [t, t + Δt] matches the Poisson distribution formula. The mathematical derivation shows that the left-hand side of the equation simplifies to the right-hand side, confirming the simulation's validity. The conclusion affirms that the two sides of the equation are equal, thereby validating the simulation as a representation of a homogeneous Poisson process.
i_a_n
Messages
78
Reaction score
0
We know that a homogeneous Poisson process is a process with a constant intensity $\lambda$. That is, for any time interval $[t, t+\Delta t]$, $P\left \{ k \;\text{events in}\; [t, t+\Delta t] \right \}=\frac{\text{exp}(-\lambda \Delta t)(\lambda \Delta t)^k}{k!}$.

And therefore, event count in $[0, T]$ follows a Poisson distribution with rate $\lambda T$. That is, $P\left \{ N(T)=k\right \}=\frac{\text{exp}(-\lambda T)(\lambda T)^k}{k!}$. ($N$ is the count.)

The problem is:

Prove that the following simulation generates a homogeneous Poisson process with rate $\lambda$ on $[0, T]$: Step 1: Sample $m$ from Poisson distribution with mean $\lambda T$. Step 2: Sample $s_1, \cdots,s_m$ i.i.d. from uniform $[0, T]$. That is, demonstrate that for any time interval $[t, t+\Delta t]$ in $[0,T]$, $P\left \{ k \;\text{events in}\; [t, t+\Delta t] \right \}=\frac{\text{exp}(-\lambda \Delta t)(\lambda \Delta t)^k}{k!}$.

Now we look at the problem, we have

Given $m$ events in $[0,T]$,

$P\left \{ k \;\text{events in}\; [t, t+\Delta t] \right \}\\
=\Sigma ^{\infty }_{m=k}P\left \{ k \;\text{events in}\; [t, t+\Delta t],m \;\text{events in}\; [0,T]\right \}\\
=\Sigma ^{\infty }_{m=k}P\left \{ k \;\text{events in}\; [t, t+\Delta t] | m \;\text{events in}\; [0,T]\right \}\cdot P\left \{ m \;\text{events in}\; [0,T] \right \}\\
=\sum_{m=k}^{\infty }\binom{m}{k}(\frac{\Delta t}{T})^k(\frac{T-\Delta t}{T})^{m-k} \cdot \frac{\text{exp}(-\lambda T)(\lambda T)^m}{m!}$

So in order to prove the result, we should have

$\sum_{m=k}^{\infty }\binom{m}{k}(\frac{\Delta t}{T})^k(\frac{T-\Delta t}{T})^{m-k} \cdot \frac{\text{exp}(-\lambda T)(\lambda T)^m}{m!}=\frac{\text{exp}(-\lambda \Delta t)(\lambda \Delta t)^k}{k!}$ $(*)$

and this should hold. But my question is how to derive $(*)$ mathematically? How to show the two sides are equal in $(*)$? Can you show it?
Thanks in advance.
 
Physics news on Phys.org
I'll give a detailed solution. There's no hard mathematics involved. We have the LHS:

$$\sum_{m=k}^{\infty }\binom{m}{k}\left(\frac{\Delta t}{T}\right)^k\left(\frac{T-\Delta t}{T}\right)^{m-k} \cdot \frac{\text{exp}(-\lambda T)(\lambda T)^m}{m!}$$
Using the fact that $\binom{m}{k} = \frac{m!}{k!(m-k)!}$, we obtain
$$ = \frac{e^{-\lambda T}}{k!} (\Delta t)^k\sum_{m=k}^{\infty} \frac{(T-\Delta t)^{m-k}}{(m-k)!} \lambda^{m}$$
Write $\lambda^m = \lambda^{(m-k)+k}$ then the previous is equal to
$$\frac{e^{-\lambda T}}{k!} (\Delta t)^k \lambda^k \sum_{m=k}^{\infty} \frac{(\lambda(T-\Delta t))^{m-k}}{(m-k)!}$$
Set $m-k = j$ then we finally have
$$\frac{e^{-\lambda T}}{k!}(\Delta t)^k \lambda^k \sum_{j=0}^{\infty} \frac{(\lambda (T-\Delta t))^j}{j!} = \frac{e^{-\lambda T}}{k!}(\Delta t)^k \lambda^k e^{\lambda T- \lambda \Delta t} = \frac{e^{-\lambda \Delta t}(\lambda \Delta t)^k}{k!}$$
which is the desired result.
 
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...