A Test for Absolute Convergence of a Series

Click For Summary
SUMMARY

The discussion focuses on the convergence of a series defined by the sequence ##\{a_n\}_{n = 1}^\infty##, where the ratio of consecutive terms satisfies the condition ##\frac{a_n}{a_{n+1}} = 1 + \frac{p}{n} + b_n## for some real number ##p > 1##. It is established that if the series ##\sum b_n## converges absolutely, then the series ##\sum a_n## also converges absolutely. This conclusion is derived from the properties of series convergence and the behavior of the terms as influenced by the parameter ##p## and the sequence ##b_n##.

PREREQUISITES
  • Understanding of series convergence criteria
  • Familiarity with the concept of absolute convergence
  • Knowledge of sequences and their limits
  • Basic principles of real analysis
NEXT STEPS
  • Study the Ratio Test for series convergence
  • Explore the concept of absolute convergence in detail
  • Investigate the implications of the convergence of ##\sum b_n## on related series
  • Learn about the properties of sequences in real analysis
USEFUL FOR

Mathematicians, students of real analysis, and anyone studying series convergence and its implications in mathematical analysis.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Let ##\{a_n\}_{n = 1}^\infty## be a sequence of real numbers such that for some real number ##p > 1##, ##\frac{a_n}{a_{n+1}} = 1 + \frac{p}{n} + b_n## where ##\sum b_n## converges absolutely. Show that ##\sum a_n## also converges absolutely.
 
  • Like
Likes   Reactions: topsquark
Physics news on Phys.org
If a sequence divergences to ##+ \infty## then so does every subsequence. For any ##r > 0##, we must have that ##\frac{r}{n} \leq |b_n|## for only a finite number of terms, otherwise ##\infty = \sum^\infty \frac{r}{n} \leq \sum^\infty |b_n|## where the sum is taken over an arbitrary subsequence. Therefore, there exists a ##N## such that ##\frac{r}{n} > |b_n|## for all ##n > N##. Therefore, there exists a ##N## such that ##\frac{r}{n} + b_n > 0## for all ##n > N##.

Define a ##q## such that ##1 < q < p##. There exists an ##N## such that ##\frac{p-q}{n} + b_n > 0## for all ##n > N##. From ##\frac{a_n}{a_{n+1}} = 1 + \frac{p}{n} + b_n## we have

\begin{align*}
\dfrac{|a_n|}{|a_{n+1}|} & = |1 + \frac{q}{n} + \frac{p-q}{n} + b_n|
\nonumber \\
& > 1 + \frac{q}{n}
\end{align*}

for ##n > N##.

Rearranged:

\begin{align*}
n \left( \dfrac{|a_n|}{|a_{n+1}|} - 1 \right) > q \qquad (*)
\end{align*}

The Raabe-Duhamel's test: Let ##\{ c_n \}## be a sequence of positive numbers. Define

\begin{align*}
\rho_n := n \left( \dfrac{c_n}{c_{n+1}} - 1 \right)
\end{align*}

if

\begin{align*}
L = \lim_{n \rightarrow \infty} \rho_n
\end{align*}

exists and ##L > 1## the series converges.

From ##(*)## we have

\begin{align*}
L = \lim_{n \rightarrow \infty} \rho_n = \lim_{n \rightarrow \infty} n \left( \dfrac{|a_n|}{|a_{n+1}|} - 1 \right) > q > 1 .
\end{align*}

Hence, ##\sum |a_n|## converges.
 
Last edited:
  • Like
Likes   Reactions: topsquark

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 7 ·
Replies
7
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K