POTW A Test for Absolute Convergence of a Series

Click For Summary
The discussion focuses on proving that if a sequence of real numbers satisfies the condition involving the ratio of consecutive terms and an additional convergent series, then the series formed by that sequence converges absolutely. It establishes the relationship between the behavior of the ratio of terms and the convergence of the series. The key is to utilize the properties of the convergent series of the sequence ##b_n## to demonstrate the absolute convergence of ##\sum a_n##. The proof hinges on manipulating the given ratio and applying convergence tests. Ultimately, the conclusion is that under the specified conditions, absolute convergence of the series ##\sum a_n## is guaranteed.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Let ##\{a_n\}_{n = 1}^\infty## be a sequence of real numbers such that for some real number ##p > 1##, ##\frac{a_n}{a_{n+1}} = 1 + \frac{p}{n} + b_n## where ##\sum b_n## converges absolutely. Show that ##\sum a_n## also converges absolutely.
 
Physics news on Phys.org
If a sequence divergences to ##+ \infty## then so does every subsequence. For any ##r > 0##, we must have that ##\frac{r}{n} \leq |b_n|## for only a finite number of terms, otherwise ##\infty = \sum^\infty \frac{r}{n} \leq \sum^\infty |b_n|## where the sum is taken over an arbitrary subsequence. Therefore, there exists a ##N## such that ##\frac{r}{n} > |b_n|## for all ##n > N##. Therefore, there exists a ##N## such that ##\frac{r}{n} + b_n > 0## for all ##n > N##.

Define a ##q## such that ##1 < q < p##. There exists an ##N## such that ##\frac{p-q}{n} + b_n > 0## for all ##n > N##. From ##\frac{a_n}{a_{n+1}} = 1 + \frac{p}{n} + b_n## we have

\begin{align*}
\dfrac{|a_n|}{|a_{n+1}|} & = |1 + \frac{q}{n} + \frac{p-q}{n} + b_n|
\nonumber \\
& > 1 + \frac{q}{n}
\end{align*}

for ##n > N##.

Rearranged:

\begin{align*}
n \left( \dfrac{|a_n|}{|a_{n+1}|} - 1 \right) > q \qquad (*)
\end{align*}

The Raabe-Duhamel's test: Let ##\{ c_n \}## be a sequence of positive numbers. Define

\begin{align*}
\rho_n := n \left( \dfrac{c_n}{c_{n+1}} - 1 \right)
\end{align*}

if

\begin{align*}
L = \lim_{n \rightarrow \infty} \rho_n
\end{align*}

exists and ##L > 1## the series converges.

From ##(*)## we have

\begin{align*}
L = \lim_{n \rightarrow \infty} \rho_n = \lim_{n \rightarrow \infty} n \left( \dfrac{|a_n|}{|a_{n+1}|} - 1 \right) > q > 1 .
\end{align*}

Hence, ##\sum |a_n|## converges.
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
3K