Absolute Value: Solve for x | MHB

Click For Summary
SUMMARY

The equation $$||x|-2|+|x+1|=3$$ has solutions at $$x=0, -2, 2, -1$$. The discussion emphasizes the importance of analyzing different cases based on the values of x, specifically the intervals $$x<-2$$, $$-22$$. Participants clarified that checking these intervals is crucial for determining the correct solutions. The final consensus confirms that the correct approach leads to the identified solutions.

PREREQUISITES
  • Understanding of absolute value equations
  • Familiarity with case analysis in algebra
  • Knowledge of interval notation
  • Basic algebraic manipulation skills
NEXT STEPS
  • Study methods for solving absolute value equations
  • Learn about case analysis in algebraic contexts
  • Explore interval notation and its applications
  • Practice solving complex equations involving absolute values
USEFUL FOR

Students studying algebra, educators teaching mathematical concepts, and anyone looking to improve their problem-solving skills in absolute value equations.

Petrus
Messages
702
Reaction score
0
Hello MHB,
solve $$||x|-2|+|x+1|=3$$
and we find that $$x=0,-2,2,-1$$
I got problem to find the 'case',

Regards,
$$|\rangle$$
 
Mathematics news on Phys.org
Petrus said:
Hello MHB,
solve $$||x|-2|+|x+1|=3$$
and we find that $$x=0,-2,2,-1$$
I got problem to find the 'case',

Regards,
$$|\rangle$$

That doesn't look like the right solution...

Talking about cases, what if x<-2? Or -2<x<-1? And what about -1<x<0? Or perhaps 0<x<2? And x>2?
 
I like Serena said:
That doesn't look like the right solution...

Talking about cases, what if x<-2? Or -2<x<-1? And what about -1<x<0? Or perhaps 0<x<2? And x>2?
I don't mean those are the answer, but those are the point we should check $$\geq$$ or $$\leq$$, I hope you did understand.
Can I also check this one insted of -1<x<0
-2<x<0?

Regards,
$$|\rangle$$
 
Petrus said:
I don't mean those are the answer, but those are the point we should check $$\geq$$ or $$\leq$$, I hope you did understand.
Can I also check this one insted of -1<x<0
-2<x<0?

Sure you can. It's just that |x+1| does something funny at x=-1.
 
I like Serena said:
Sure you can. It's just that |x+1| does something funny at x=-1.
Thanks, got the correct answer now :)
Regards,
$$|\rangle$$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K