Ads/CFT and Ashtekar variables or spinfoam

  • Context: Undergrad 
  • Thread starter Thread starter kodama
  • Start date Start date
  • Tags Tags
    Loop quantum gravity
Click For Summary

Discussion Overview

The discussion revolves around the relationship between Ashtekar variables, spinfoam theory, and the AdS/CFT correspondence in the context of quantum gravity. Participants explore theoretical frameworks, potential issues with loop quantum gravity (LQG), and the implications of using conformal field theories (CFT) to address quantum gravity questions.

Discussion Character

  • Debate/contested
  • Technical explanation
  • Conceptual clarification

Main Points Raised

  • Some participants argue that there are theoretical problems with LQG due to the transition from smooth to generalized connections, which may undermine the relationship with Riemannian geometry.
  • Others suggest that Ashtekar variables can be reformulated in the context of Anti de Sitter spacetime and that this formulation could be dual to a CFT, potentially providing insights into quantum gravity.
  • There is a viewpoint that the AdS/CFT correspondence may not be testable, raising concerns about its applicability in real-world scenarios.
  • Some participants express uncertainty about the gravity dynamics in the context of Chern-Simons theory and its connection to experimental measurements.
  • A few participants reference the famous example of type IIB string theory and its equivalence to N = 4 supersymmetric Yang–Mills theory, questioning if similar correspondences exist for 4D or 5D gravity with QCD.
  • There is a discussion about the current state of Chern-Simons theory in 3+1 dimensions, with some participants finding it trivially true but requiring further refinement.

Areas of Agreement / Disagreement

Participants express multiple competing views regarding the validity and implications of LQG, Ashtekar variables, and the AdS/CFT correspondence. There is no consensus on the effectiveness of these theories or their experimental relevance.

Contextual Notes

Participants highlight limitations in understanding the gravity dynamics and the challenges in testing the AdS/CFT correspondence. The discussion also touches on the continuum/discrete problem in quantum gravity theories.

kodama
Messages
1,083
Reaction score
144
TL;DR
another approach
there are theoretical problems with loop quantum gravity based on directly quantizing Ashtekar variables,

for example,

"One can pinpoint the technical error in LQG explicitly:To recall, the starting point of LQG is to encode the Riemannian metric in terms of the parallel transport of the affine connection that it induces. This parallel transport is an assignment to each smooth curve in the manifold between points x

and y of a linear isomorphism TxX→TyY
between the tangent spaces over these points.This assignment is itself smooth, as a function on the smooth space of smooth curves, suitably defined. Moreover, it satisfies the evident functoriality conditions, in that it respects composition of paths and identity paths.It is a theorem that smooth (affine) connections on smooth manifolds are indeed equivalent to such smooth functorial assignments of parallel transport isomorphisms to smooth curves. This theorem goes back to Barrett, who considered it for the case that all paths are taken to be loops. For the general case it is discussed in arxiv.org/0705.0452, following suggestion by John Baez.So far so good. The idea of LQG is now to use this equivalence to equivalently regard the configuration space of gravity as a space of parallell transport/holonomy assignments to paths (in particular loops, whence the name "LQG").But now in the next step in LQG, the smoothness condition on these parallel transport assignments is dropped. Instead, what is considered are general functions from paths to group elements, which are not required to be smooth or even to be continuous, hence plain set-theoretic functions. In the LQG literature these assignments are then called "generalized connections". It is the space of these "generalized connections" which is then being quantized.The trouble is that there is no relation left between "generalized connections" and the actual (smooth) affine connections of Riemanniann geometry. The passage from smooth to "generalized connections" is an ad hoc step that is not justified by any established rule of quantization. It effectively changes the nature of the system that is being quantized."
ref https://physics.stackexchange.com/q...lly-not-listed-as-a-theory-of-e/360010#360010

since Ashtekar variables are standard general relativity rewritten from metric to connections formulation, Anti de Sitter spacetime could be formulated in terms of Ashtekar variables

with the advantage that here, Anti de Sitter spacetime is expressed as smooth (affine) connections on smooth manifolds are indeed equivalent to such smooth functorial assignments of parallel transport isomorphisms to smooth curves rather than a metric in standard GR. it is expressed as a SU(2) gauge theory similar to used in the standard model.

according to the AdS/CFT correspondence the bulk is an , Anti de Sitter spacetime here in 4 dimensions, there is a corresponding conformal field theories in one less dimension.

so Ashtekar variables in 4 dimensions and Anti de Sitter spacetime should be dual to a conformal field theories, and so working with conformal field theories could answer many quantum gravity questions as LQG appears to be incorrect.

if spinfoam can reproduce Anti de Sitter spacetime in 4 dimensions, that it should also be dual to a CFT,

and then work with the CFT to answer any quantum gravity questions

to date, supersymmetry has not been confirmed by the LHC and may not exist in nature. there is also no evidence of additional Kaluza Klein dimensions as required by string theory.

in summary, one form of quantum gravity is the "bulk" of Anti de Sitter spacetime in 4 dimensions expressed as Ashtekar variables or spinfoam, without supersymmetry. It is dual to a 3 dimensional conformal field theory according to the the AdS/CFT correspondence

so any quantum gravity calculations can be formed by a CFT in 3 dimensions, and theoertical issues of quantum gravity can be respond by the corresponding CFT.

what makes this different from LQG, is that there is no direct quantiziation of Ashtekar variables, only use of CFT via holographic duality

this isn't LQG but holographic Ashtekar theory, or holographic spinfoam theory.I have in mind a spinfoam theory in 4 dimensions completely independent of LQG but satisfies the AdS/CFT correspondence

since the bulk is Anti de Sitter spacetime in 4 dimensions expressed as Ashtekar variables smooth (affine) connections on smooth manifolds are indeed equivalent to such smooth functorial assignments of parallel transport isomorphisms to smooth curves

the CFT could help show how it's quantum gravity properties
 
Last edited:
  • Like
Likes   Reactions: casparov
Physics news on Phys.org
I think we should stick with 4-D spacetime too, in connection to AdS/CFT I believe 3+1 chern-simons is used for this gravity explanation, but I find it unclear as to what the gravity dynamics actually are ["gauge/connection" etc] and if it comes anywhere close to experimental measurements. I feel there is an important insight missing . The gravity problem is one of the biggest issues so why not focus on that aspect ?
Then I also have some problem with the AdS/CFT correspondence in the first place since we probably can never test it.
What you mention is also related to the continuum/discrete problem. I feel LQG is still on to something
 
Last edited:
  • Like
Likes   Reactions: kodama
casparov said:
I think we should stick with 4-D spacetime too, in connection to AdS/CFT I believe 3+1 chern-simons is used for this gravity explanation, but I find it unclear as to what the gravity dynamics actually are ["gauge/connection" etc] and if it comes anywhere close to experimental measurements. I feel there is an important insight missing . The gravity problem is one of the biggest issues so why not focus on that aspect ?
Then I also have some problem with the AdS/CFT correspondence in the first place since we probably can never test it.
What you mention is also related to the continuum/discrete problem. I feel LQG is still on to something

AdS/CFT correspondence most famous exampleis type IIB string theory on the product space A d S 5 × S 5 is equivalent to N = 4 supersymmetric Yang–Mills theory on the four-dimensional boundary

Is there any conformal field theory in 3+1or 2+1 that correspondence with 4D or 5D gravity as in the real world

specifically quantum chromodynamics, the fundamental theory of the strong force with conformal symmetry

AdS/CFT correspondence of 4D or 5D gravity in Ashtekar variables and a conformal field theory in 3+1or 2+1 that is QCD with conformal symmetry
 
I believe you are correct in that is the most famous example and still being lectured today (saw one a week ago from IAS). I can reference you to a nice talk given by Alejandra Castro regarding 3D+1 Chern-Simons theory and also in relation to AdS/CFT , she talks about the gravity connection.

I am not sure on the current state of Chern-Simons in 3 spatial dimensions (+1 time) but to me it is trivially true, yet requires more refinement
 
  • Like
Likes   Reactions: kodama
casparov said:
I believe you are correct in that is the most famous example and still being lectured today (saw one a week ago from IAS). I can reference you to a nice talk given by Alejandra Castro regarding 3D+1 Chern-Simons theory and also in relation to AdS/CFT , she talks about the gravity connection.

I am not sure on the current state of Chern-Simons in 3 spatial dimensions (+1 time) but to me it is trivially true, yet requires more refinement


what conformal field theory is AdS/CFT correspondence with AdS described by 4D Ashtekar variables
 
casparov said:
I am not sure on the current state of Chern-Simons in 3 spatial dimensions (+1 time) but to me it is trivially true, yet requires more refinement
What is trivially true?

Ordinary Chern-Simons theory only exists in an odd number of space-time dimensions. Chern-Simons in 3+1 dimensions is relatively recent and involves complexifying one of the space-time coordinates in 2+1 Chern-Simons.
 
  • Like
Likes   Reactions: kodama
mitchell porter said:
N = 4 supersymmetric Yang–Mills theory on the four-dimensional boundaryWhat is trivially true?

Ordinary Chern-Simons theory only exists in an odd number of space-time dimensions. Chern-Simons in 3+1 dimensions is relatively recent and involves complexifying one of the space-time coordinates in 2+1 Chern-Simons.
what do you think of the idea of AdS/CFT correspondence with AdS described by 4D or 5D Ashtekar variables and CFT N = 4 supersymmetric Yang–Mills theory on the four-dimensional boundary
 
mitchell porter said:
What is trivially true?

Ordinary Chern-Simons theory only exists in an odd number of space-time dimensions. Chern-Simons in 3+1 dimensions is relatively recent and involves complexifying one of the space-time coordinates in 2+1 Chern-Simons.
The dynamics of the theory, but not the choice of G the Lie group
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 16 ·
Replies
16
Views
6K
  • · Replies 13 ·
Replies
13
Views
4K
  • · Replies 15 ·
Replies
15
Views
6K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 19 ·
Replies
19
Views
4K
  • · Replies 0 ·
Replies
0
Views
4K
  • · Replies 26 ·
Replies
26
Views
6K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
3K