MHB Amy's question at Yahoo Answers (Orthogonal complex subspace)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Complex Subspace
Click For Summary
The discussion centers on finding an orthonormal basis for the orthogonal complement W perp of the subspace W in C3, defined by the vectors (1, i, 1-i) and (i, -1, 0). The inner product is utilized to establish the conditions for a vector to belong to W perp, leading to a system of equations. The dimension of W perp is determined to be 1, indicating that a non-zero solution to the equations provides a basis. By selecting a specific value for x1, the corresponding values for x2 and x3 can be calculated, resulting in an orthonormal basis B for W perp. The solution emphasizes the importance of understanding the inner product in complex vector spaces.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Consider the subspace W = span{(1, i, 1-i),(i, -1, 0)} of C3.

Find an orthonormal basis for W perp. (orthogonal complement)

I usually know how to do this but the field is throwing me off. any help explaining please!

Here is a link to the question:

Orthogonal basis? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Amy,

Using the inner product $$\left<(x_1,x_2,x_3),(y_1, y_2, y_3)\right>=x_1\overline{y_1}+x_2\overline{y_2}+x_3\overline{y_3}$$ we get $$(x_1,x_2,x_3)\in W^{\perp}\Leftrightarrow \left \{ \begin{matrix} \left<(x_1,x_2,x_3),(1, i, 1-i)\right>=0\\\left<(x_1,x_2,x_3),(i, -1, 0)\right>=0\end{matrix}\right.\Leftrightarrow\left \{ \begin{matrix} x_1-ix_2+(1+i)x_3=0\\-ix_1-x_2=0\end{matrix}\right.$$
As $\dim W^{\perp}=\dim \mathbb{C}^3-\dim W=3-2=1$, a non zero solution $v$ of the system is a basis for $W^{\perp}$. Choose for example $x_1=1$ and you'll easily find $x_2$ an $x_3$. Then, an orthonormal basis for $W^{\perp}$ is $B=\left\{\dfrac{v}{ \left\|{v}\right\|}\right\}$ .
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K