MHB Amy's question at Yahoo Answers (Orthogonal complex subspace)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Complex Subspace
AI Thread Summary
The discussion centers on finding an orthonormal basis for the orthogonal complement W perp of the subspace W in C3, defined by the vectors (1, i, 1-i) and (i, -1, 0). The inner product is utilized to establish the conditions for a vector to belong to W perp, leading to a system of equations. The dimension of W perp is determined to be 1, indicating that a non-zero solution to the equations provides a basis. By selecting a specific value for x1, the corresponding values for x2 and x3 can be calculated, resulting in an orthonormal basis B for W perp. The solution emphasizes the importance of understanding the inner product in complex vector spaces.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Consider the subspace W = span{(1, i, 1-i),(i, -1, 0)} of C3.

Find an orthonormal basis for W perp. (orthogonal complement)

I usually know how to do this but the field is throwing me off. any help explaining please!

Here is a link to the question:

Orthogonal basis? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Amy,

Using the inner product $$\left<(x_1,x_2,x_3),(y_1, y_2, y_3)\right>=x_1\overline{y_1}+x_2\overline{y_2}+x_3\overline{y_3}$$ we get $$(x_1,x_2,x_3)\in W^{\perp}\Leftrightarrow \left \{ \begin{matrix} \left<(x_1,x_2,x_3),(1, i, 1-i)\right>=0\\\left<(x_1,x_2,x_3),(i, -1, 0)\right>=0\end{matrix}\right.\Leftrightarrow\left \{ \begin{matrix} x_1-ix_2+(1+i)x_3=0\\-ix_1-x_2=0\end{matrix}\right.$$
As $\dim W^{\perp}=\dim \mathbb{C}^3-\dim W=3-2=1$, a non zero solution $v$ of the system is a basis for $W^{\perp}$. Choose for example $x_1=1$ and you'll easily find $x_2$ an $x_3$. Then, an orthonormal basis for $W^{\perp}$ is $B=\left\{\dfrac{v}{ \left\|{v}\right\|}\right\}$ .
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top