MHB Amy's question at Yahoo Answers (Self adjoint operator)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Operator
Click For Summary
The discussion focuses on proving that the linear transformation T defined on the vector space V = P2(C) is self-adjoint. The inner product is defined as <a_0 + a_1x + a_2x^2, b_0 + b_1x + b_2x^2> = a0b0 + a1b1 + a2b2, with the b's being conjugates. To show T is self-adjoint, it is necessary to demonstrate that <T(p), q> = <p, T(q)> for all p, q in V. The calculations reveal that both sides of the equation yield the same result, confirming that T is indeed self-adjoint. This conclusion is essential for understanding the properties of linear transformations in functional analysis.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Let V = P2(C) with inner product

< a_0+a_1x+a_2x^2 , b_0+b_1x+b_2x^2 > = a0b0 + a1b1 + a2b2 (with the b's being conjugates)

Show that T:V--->V define by T(a_0+a_1x+a_2x^2) = - ia_2 - a_1x + ia_0x^2

is self adjoint

Here is a link to the question:

Show a linear transformation is self adjoint? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Amy,

For all $p,q\in V=P_2(\mathbb{C})$ we need to prove $$<T(p),q>=<p,T(q)>\quad\mbox{ (definition of self adjoint operator)}$$ Denote $p(x)=a_0+a_1x+a_2x^2$ and $q(x)= b_0+b_1x+b_2x^2$. Then, $$<T(p),q>=< - ia_2 - a_1x + ia_0x^2, b_0+b_1x+b_2x^2>=\\-ia_2\overline{b_0}-a_1\overline{b_1}+ia_0\overline{b_2}$$ $$<p,T(q)>=<a_0+a_1x+a_2x^2,- ib_2 - b_1x + ib_0x^2>=\\a_0\overline{(-ib_2)}+a_1\overline{(-b_1)}+a_2\overline{(ib_0)}=ia_0\overline{b_2}-a_1\overline{b_1}-ia_2\overline{b_0}$$ That is, or all $p,q\in V=P_2(\mathbb{C})$ we have proven $<T(p),q>=<p,T(q)>$ as a consequence, $T$ is self adjoint.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K