MHB An increasing function on the power set of a set

Click For Summary
The discussion centers on a function f defined on the power set of a finite set A, which maintains the property that if X is a subset of Y, then f(X) is a subset of f(Y). Participants explore the existence of a set T in the power set such that f(T) equals T. This property is linked to the Knaster–Tarski theorem, which asserts that such a fixed point T exists. The theorem's applicability extends beyond finite sets, making it a significant concept in set theory. Understanding this theorem enhances comprehension of increasing functions on power sets.
caffeinemachine
Gold Member
MHB
Messages
799
Reaction score
15
Let $A$ be a finite set. Let $\mathcal{P}(A)$ denote the power set of $A$. Let $f:\mathcal{P}(A)\to \mathcal{P}(A)$ be a function such that $X\subseteq Y\Rightarrow f(X)\subseteq f(Y)$. Show that $\exists T\in \mathcal{P}(A)$ such that $f(T)=T$.

P.S. The power set of $A$ is the set of all the subsets of $A$.
NOTE: The theorem holds even when $A$ is not finite.
 
Mathematics news on Phys.org
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K