Dear friends, let us use the definition of Lebesgue integral on ##X,\mu(X)<\infty## as the limit(adsbygoogle = window.adsbygoogle || []).push({});

##\int_X fd\mu:=\lim_{n\to\infty}\int_Xf_nd\mu=\lim_{n\to\infty}\sum_{k=1}^\infty y_{n,k}\mu(A_{n,k})##where ##\{f_n\}## is a sequence of simple, i.e. taking countably many values ##y_{n,k}## for ##k=1,2,\ldots##, functions ##f_n:X\to\mathbb{C}## uniformly converging to ##f##, and ##\{y_{n,k}\}=f_n(A_{n,k})## where ##\forall i\ne j\quad A_{n,i}\cap A_{n,j}=\emptyset##.

I know that if any sequence ##\{f_n\}\subset L_p(X,\mu)##, ##p\geq 1## uniformly converges to ##f## then [it also converges][1] with respect to the norm ##\|\cdot\|_p## to the same limit, which is therefore an element of ##L_p(X,\mu)##.

I read in Kolmogorov-Fomin'sElements of the Theory of Functions and Functional Analysis(1963 Graylock edition, p.85) thatan arbitrary function##f\in L_2##can be approximated[with respect to norm ##\|\cdot\|_2##, I suspect]with arbitrary simple functions belonging to##L_2##.

I do not understand how the last statement is deduced. If it were true, I would find the general case for ##L_p##, ##p\geq 1##, even more interesting. I understand that if ##f\in L_p\subset L_1## then for all ##\varepsilon>0## there exists a simple function ##f_n\in L_1## such that ##\forall x\in A\quad |f(x)-f_n(x)|<\varepsilon## and then, for all ##p\geq 1##, ##\|f-f_n\|_p<\varepsilon##, but how to find ##f_n\in L_p## (if ##p=2## or in general ##p>1##)?

Can anybody explain such a statement? Thank you so much!!!

**Physics Forums | Science Articles, Homework Help, Discussion**

Dismiss Notice

Join Physics Forums Today!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

The friendliest, high quality science and math community on the planet! Everyone who loves science is here!

# Approximation of ##f\in L_p## with simple function ##f_n\in L_p##

**Physics Forums | Science Articles, Homework Help, Discussion**