Err... chasing around a bit like at
http://en.wikipedia.org/wiki/Nonclassical_light, get the idea Fock state has this undefined phase thing, in contrast to say a coherent state. Otherwise, to say '..1-1 correspondence with classical EM...with very nonclassical properties.' leaves me scratching pate.[,QUOTE]
Yes. The state vectors are in 1-1 correspondence but the normalized states are not.
Q-reeus said:
At any rate, taking this to mean overall that we have a physical, objectively real and continuous field whose space and time evolution is essentially classical (in most situations), this only reinforces my misgivings about detector clicks for extremely attenuated light.
It is classical in the common situations like sunlight or laser light. It takes quantum optics ingenuity to create nonclassical states of light.
Q-reeus said:
I share your view there is no possibility of instantaneous physical collapse of such a field quanta - what the screen 'sees' is what the screen 'gets'. OK then - let the light be so attenuated on average only one field quanta passes the slits every minute or so. Previously you have stated the detection screen electrons form a chaotic system with no memory (meaning I assume no ability to either accumulate incident energy, or retain knowledge of the intensity distribution for any reasonable length of time - ie. dissipative system).
The energy is absorbed collectively, of course, but the electron doesn't know that.
Q-reeus said:
All the foregoing strongly suggests to me that by the continuous field view there will never be any clicks, or on the rare occasion
Rare occasion means one electron per minute, or so.
Q-reeus said:
Probability of a click drops simply in direct proportion to the screen area,
No. The probability drops quadratically with the distance from the screen but grows linearly with the screen area (assuming the detector has constant thickness).