MHB Are There Infinite Primes of the Form 4k + 1?

  • Thread starter Thread starter Euge
  • Start date Start date
Click For Summary
The discussion centers on proving the existence of infinitely many primes of the form 4k + 1. Participants are encouraged to engage with the Problem of the Week (POTW) and follow specific guidelines for submissions. Acknowledgment is given to castor28 for providing a correct solution to the problem. The thread emphasizes the importance of mathematical proof and community participation in exploring this topic. The conversation highlights the ongoing interest in number theory and prime distribution.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Show that there are infinitely many primes of the form 4k + 1 where $k$ is an integer.

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Congratulations to castor28 for his correct solution, which can be read below:

Assume that there are only finitely many such primes, and call them $p_1,\ldots,p_n$. Note that, as $p_1=5$, this set is not empty.

Consider the number $N=\left(\prod{p_i}\right)^2+1$. Because $p_i\equiv1\pmod4$ for all $i$, $N\equiv2\pmod4$. As $N>2$, this shows that $N$ is not a power of $2$ and has at least one odd prime factor $q$.

We have $\left(\prod{p_i}\right)^2\equiv-1\pmod{q}$, which shows that $-1$ is a quadratic residue modulo $q$. By the laws of quadratic reciprocity, this implies that $q\equiv1\pmod4$. However, none of the $p_i$ can divide $N$, and $q$ is a prime of the form $4k+1$ different from the $p_i$; this contradicts the fact that the set $\{p_i\}$ contains all such primes.