MHB Are there infinitely many primes that satisfy $p=3$ mod4 and divide $x^2+2$?

  • Thread starter Thread starter Poirot1
  • Start date Start date
  • Tags Tags
    Prime
Click For Summary
The discussion centers on proving the existence of infinitely many primes \( p \) such that \( p \equiv 3 \mod 4 \) and \( p \) divides \( x^2 + 2 \) for odd natural numbers \( x \). It is established that \( x^2 + 2 \equiv 3 \mod 4 \) when \( x \) is odd, indicating that there must be a prime divisor \( p \equiv 3 \mod 4 \). The participants explore the implications of prime divisors being either \( 1 \) or \( 3 \mod 4 \), concluding that they cannot all be \( 1 \mod 4 \) since this would contradict the earlier result. Finally, a method is suggested to generate an infinite list of such primes by constructing \( x \) from the product of known primes congruent to \( 3 \mod 4 \). The discussion concludes with the affirmation that the existence of such primes is established.
Poirot1
Messages
243
Reaction score
0
1)show that for an odd natural number x, $x^2+2=3$ mod4.

2)Deduce that there exist a prime p such that $p=3$ mod4 and p|$x^2+2$

3)Use this to prove there are infinitely many primes p such that $p=3$ mod 4

1) is easy just writing x=2m+1

2) and 3) I don't know what to do.
 
Mathematics news on Phys.org
Re: prime problem

Poirot said:
1)show that for an odd natural number x, $x^2+2=3$ mod4.

2)Deduce that there exist a prime p such that $p=3$ mod4 and p|$x^2+2$

3)Use this to prove there are infinitely many primes p such that $p=3$ mod 4

1) is easy just writing x=2m+1

2) and 3) I don't know what to do.
For 2), think about the prime divisors of $x^2+2$. They can't include $2$ (because $x^2+2$ is odd), so they must all be congruent to $1$ or $3\pmod4$. Why can't they all be congruent to $1\pmod4$?

For 3), build up a list $p_1,\ p_2,\ p_3,\ldots$ of primes congruent to $3\pmod4$. If you already have $p_1,\ldots,p_n$, let $x$ be the product $p_1p_2\cdots p_n$ and use 2) to find a new prime $p_{n+1}$ to add to the list.
 
Re: prime problem

Opalg said:
For 2), think about the prime divisors of $x^2+2$. They can't include $2$ (because $x^2+2$ is odd), so they must all be congruent to $1$ or $3\pmod4$. Why can't they all be congruent to $1\pmod4$?

For 3), build up a list $p_1,\ p_2,\ p_3,\ldots$ of primes congruent to $3\pmod4$. If you already have $p_1,\ldots,p_n$, let $x$ be the product $p_1p_2\cdots p_n$ and use 2) to find a new prime $p_{n+1}$ to add to the list.

If they are all congruent to 1 mod 4, then x^2+2 is congruent to 1 mod 4. Which implies
4|x^2-1. This is not impossible e.g x=5
 
Re: prime problem

Poirot said:
If they are all congruent to 1 mod 4, then x^2+2 is congruent to 1 mod 4.
That is correct. But you have shown in 1) that x^2+2 is congruent to 3 mod 4. So the assumption that they are all congruent to 1 mod 4 must be false ... .
 
Re: prime problem

Opalg said:
For 2), think about the prime divisors of $x^2+2$. They can't include $2$ (because $x^2+2$ is odd), so they must all be congruent to $1$ or $3\pmod4$. Why can't they all be congruent to $1\pmod4$?
I'm going to chime in real quick. Don't we still have to prove that such a (p,x) exists? Or do we merely note that p = 3, x = 1 suits the bill, therefore existence?

-Dan
 
Re: prime problem

topsquark said:
I'm going to chime in real quick. Don't we still have to prove that such a (p,x) exists? Or do we merely note that p = 3, x = 1 suits the bill, therefore existence?

-Dan

Since x^2+1 >1, it has a prime divisor, and opalg's analysis follows.
 
Here is a little puzzle from the book 100 Geometric Games by Pierre Berloquin. The side of a small square is one meter long and the side of a larger square one and a half meters long. One vertex of the large square is at the center of the small square. The side of the large square cuts two sides of the small square into one- third parts and two-thirds parts. What is the area where the squares overlap?

Similar threads

Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
16
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K