MHB Are there infinitely many primes that satisfy $p=3$ mod4 and divide $x^2+2$?

  • Thread starter Thread starter Poirot1
  • Start date Start date
  • Tags Tags
    Prime
Click For Summary
The discussion centers on proving the existence of infinitely many primes \( p \) such that \( p \equiv 3 \mod 4 \) and \( p \) divides \( x^2 + 2 \) for odd natural numbers \( x \). It is established that \( x^2 + 2 \equiv 3 \mod 4 \) when \( x \) is odd, indicating that there must be a prime divisor \( p \equiv 3 \mod 4 \). The participants explore the implications of prime divisors being either \( 1 \) or \( 3 \mod 4 \), concluding that they cannot all be \( 1 \mod 4 \) since this would contradict the earlier result. Finally, a method is suggested to generate an infinite list of such primes by constructing \( x \) from the product of known primes congruent to \( 3 \mod 4 \). The discussion concludes with the affirmation that the existence of such primes is established.
Poirot1
Messages
243
Reaction score
0
1)show that for an odd natural number x, $x^2+2=3$ mod4.

2)Deduce that there exist a prime p such that $p=3$ mod4 and p|$x^2+2$

3)Use this to prove there are infinitely many primes p such that $p=3$ mod 4

1) is easy just writing x=2m+1

2) and 3) I don't know what to do.
 
Mathematics news on Phys.org
Re: prime problem

Poirot said:
1)show that for an odd natural number x, $x^2+2=3$ mod4.

2)Deduce that there exist a prime p such that $p=3$ mod4 and p|$x^2+2$

3)Use this to prove there are infinitely many primes p such that $p=3$ mod 4

1) is easy just writing x=2m+1

2) and 3) I don't know what to do.
For 2), think about the prime divisors of $x^2+2$. They can't include $2$ (because $x^2+2$ is odd), so they must all be congruent to $1$ or $3\pmod4$. Why can't they all be congruent to $1\pmod4$?

For 3), build up a list $p_1,\ p_2,\ p_3,\ldots$ of primes congruent to $3\pmod4$. If you already have $p_1,\ldots,p_n$, let $x$ be the product $p_1p_2\cdots p_n$ and use 2) to find a new prime $p_{n+1}$ to add to the list.
 
Re: prime problem

Opalg said:
For 2), think about the prime divisors of $x^2+2$. They can't include $2$ (because $x^2+2$ is odd), so they must all be congruent to $1$ or $3\pmod4$. Why can't they all be congruent to $1\pmod4$?

For 3), build up a list $p_1,\ p_2,\ p_3,\ldots$ of primes congruent to $3\pmod4$. If you already have $p_1,\ldots,p_n$, let $x$ be the product $p_1p_2\cdots p_n$ and use 2) to find a new prime $p_{n+1}$ to add to the list.

If they are all congruent to 1 mod 4, then x^2+2 is congruent to 1 mod 4. Which implies
4|x^2-1. This is not impossible e.g x=5
 
Re: prime problem

Poirot said:
If they are all congruent to 1 mod 4, then x^2+2 is congruent to 1 mod 4.
That is correct. But you have shown in 1) that x^2+2 is congruent to 3 mod 4. So the assumption that they are all congruent to 1 mod 4 must be false ... .
 
Re: prime problem

Opalg said:
For 2), think about the prime divisors of $x^2+2$. They can't include $2$ (because $x^2+2$ is odd), so they must all be congruent to $1$ or $3\pmod4$. Why can't they all be congruent to $1\pmod4$?
I'm going to chime in real quick. Don't we still have to prove that such a (p,x) exists? Or do we merely note that p = 3, x = 1 suits the bill, therefore existence?

-Dan
 
Re: prime problem

topsquark said:
I'm going to chime in real quick. Don't we still have to prove that such a (p,x) exists? Or do we merely note that p = 3, x = 1 suits the bill, therefore existence?

-Dan

Since x^2+1 >1, it has a prime divisor, and opalg's analysis follows.
 

Similar threads

Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
16
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
3K
  • · Replies 2 ·
Replies
2
Views
4K
Replies
17
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K