MHB Are there infinitely many primes that satisfy $p=3$ mod4 and divide $x^2+2$?

  • Thread starter Thread starter Poirot1
  • Start date Start date
  • Tags Tags
    Prime
Poirot1
Messages
243
Reaction score
0
1)show that for an odd natural number x, $x^2+2=3$ mod4.

2)Deduce that there exist a prime p such that $p=3$ mod4 and p|$x^2+2$

3)Use this to prove there are infinitely many primes p such that $p=3$ mod 4

1) is easy just writing x=2m+1

2) and 3) I don't know what to do.
 
Mathematics news on Phys.org
Re: prime problem

Poirot said:
1)show that for an odd natural number x, $x^2+2=3$ mod4.

2)Deduce that there exist a prime p such that $p=3$ mod4 and p|$x^2+2$

3)Use this to prove there are infinitely many primes p such that $p=3$ mod 4

1) is easy just writing x=2m+1

2) and 3) I don't know what to do.
For 2), think about the prime divisors of $x^2+2$. They can't include $2$ (because $x^2+2$ is odd), so they must all be congruent to $1$ or $3\pmod4$. Why can't they all be congruent to $1\pmod4$?

For 3), build up a list $p_1,\ p_2,\ p_3,\ldots$ of primes congruent to $3\pmod4$. If you already have $p_1,\ldots,p_n$, let $x$ be the product $p_1p_2\cdots p_n$ and use 2) to find a new prime $p_{n+1}$ to add to the list.
 
Re: prime problem

Opalg said:
For 2), think about the prime divisors of $x^2+2$. They can't include $2$ (because $x^2+2$ is odd), so they must all be congruent to $1$ or $3\pmod4$. Why can't they all be congruent to $1\pmod4$?

For 3), build up a list $p_1,\ p_2,\ p_3,\ldots$ of primes congruent to $3\pmod4$. If you already have $p_1,\ldots,p_n$, let $x$ be the product $p_1p_2\cdots p_n$ and use 2) to find a new prime $p_{n+1}$ to add to the list.

If they are all congruent to 1 mod 4, then x^2+2 is congruent to 1 mod 4. Which implies
4|x^2-1. This is not impossible e.g x=5
 
Re: prime problem

Poirot said:
If they are all congruent to 1 mod 4, then x^2+2 is congruent to 1 mod 4.
That is correct. But you have shown in 1) that x^2+2 is congruent to 3 mod 4. So the assumption that they are all congruent to 1 mod 4 must be false ... .
 
Re: prime problem

Opalg said:
For 2), think about the prime divisors of $x^2+2$. They can't include $2$ (because $x^2+2$ is odd), so they must all be congruent to $1$ or $3\pmod4$. Why can't they all be congruent to $1\pmod4$?
I'm going to chime in real quick. Don't we still have to prove that such a (p,x) exists? Or do we merely note that p = 3, x = 1 suits the bill, therefore existence?

-Dan
 
Re: prime problem

topsquark said:
I'm going to chime in real quick. Don't we still have to prove that such a (p,x) exists? Or do we merely note that p = 3, x = 1 suits the bill, therefore existence?

-Dan

Since x^2+1 >1, it has a prime divisor, and opalg's analysis follows.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top