MHB Area of Isosceles Triangle proof

Click For Summary
The discussion focuses on understanding the derivation of the third line in a proof related to the area of an isosceles triangle. The process begins by multiplying the expression $h(p + q)$ by $ab/ab$ to maintain equality. This manipulation leads to a reformulation of the area expression, breaking it down into components involving the heights and bases of the triangle. The final expression simplifies to $\frac{1}{2}h(p + q)$, demonstrating how the area is calculated. Clarity on these steps is essential for grasping the proof's logic.
paulmdrdo1
Messages
382
Reaction score
0
I want to know how did it arrive at the third line of this proof. I didn't get it. Thanks!
 

Attachments

  • Isosceles Proof.jpg
    Isosceles Proof.jpg
    13.9 KB · Views: 94
Mathematics news on Phys.org
paulmdrdo said:
I want to know how did it arrive at the third line of this proof. I didn't get it. Thanks!

Hi paulmdrdo,

First multiply $h(p + q)$ by $ab/ab$ (which equals $1$) to get the expression

$$ab \cdot \frac{h(p + q)}{ab}.$$

Since

$$ \frac{h(p + q)}{ab} = \frac{hp+hq}{ab} = \frac{p}{a}\frac{h}{b} + \frac{h}{a}\frac{q}{b},$$

we have

$$ ab \cdot \frac{h(p + q)}{ab} = ab\left(\frac{p}{a}\frac{h}{b} + \frac{h}{a}\frac{q}{b}\right)$$

and therefore

$$\frac{1}{2}h(p + q) = \frac{1}{2}ab\left(\frac{p}{a}\frac{h}{b} + \frac{h}{a}\frac{q}{b}\right).$$
 

Similar threads

Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K