- #1
- 955
- 648
- TL;DR Summary
- Is it possible to assign a meaningful value to the integral (up to infinity) of oscillating divergent functions?
There are meaningful ways to assign values to things like
1 - 1 + 1 + ...
or
1 - 2 + 3 - 4 + ...
In a similar spirit, is it possible to assign a value to the integral of a function like this: ##f(x)=x*sin(x)##
or this one:
##g(x)=Re(x^{1+5i})##
(Integrals from some value, say zero, up to infinity)
1 - 1 + 1 + ...
or
1 - 2 + 3 - 4 + ...
In a similar spirit, is it possible to assign a value to the integral of a function like this: ##f(x)=x*sin(x)##
or this one:
##g(x)=Re(x^{1+5i})##
(Integrals from some value, say zero, up to infinity)
Last edited by a moderator: