What Structure Must G Have for All Aut(G) Elements to Send N to N

  • Thread starter Thread starter eastside00_99
  • Start date Start date
  • Tags Tags
    Finite Groups
Click For Summary
The discussion revolves around the structure of a finite group G and its normal subgroup N, particularly focusing on the condition that all elements of Aut(G) must map N to itself. It is established that if the order of N is relatively prime to the order of G/N, then any automorphism f must satisfy f(N) = N. Participants analyze the implications of the orders of elements and utilize properties of bijections to demonstrate that the order of f(n) must divide both |N| and |G/N|, leading to the conclusion that f(n) is contained in N. The conversation highlights the intricacies of group theory and the relationships between subgroup orders and automorphisms. The final consensus confirms that the structure of G ensures the preservation of N under automorphisms.
eastside00_99
Messages
232
Reaction score
0
Here is another problem from Lang.

Let G be a finite group. N a normal subgroup. We want to ask what structure must G have in order for all the elements of Aut(G) to send N to N. It is assumed that the order of N is relatively prime to the order of G/N. I have worked on this problem for a while and must be missing something pretty basic.
 
Physics news on Phys.org
In other words, let G be finite, N a normal subgroup of G with the order of N relatively prime to the order of G/N. Prove that if g is in Aut(G)), then g(N)=N.
 
Let's use f instead of g to avoid confusion. First, note that |f(N)|=|N| since f is a bijection. So in particular, |f(N)| and |G/N| are coprime. Next consider an arbitrary element f(n) of f(N) and set k=o(f(n)). Observe that (f(n)N)^k = (f(n)N)^|G/N| = N. So... ?
 
morphism said:
Let's use f instead of g to avoid confusion. First, note that |f(N)|=|N| since f is a bijection. So in particular, |f(N)| and |G/N| are coprime. Next consider an arbitrary element f(n) of f(N) and set k=o(f(n)). Observe that (f(n)N)^k = (f(n)N)^|G/N| = N. So... ?

I guess I would write it a little bit differently. But, yeah, your solution is right. I can't believe how a simply problem can catch me off guard like that.

Assume n is in N and n=/=e. (The case for when n=e is trivial) Let k be the order of f(n). Yes, I think i see: f(n)^k =e and so N = (f(n)N)^k. Therefore, k divides |G/N|, and we get your identity

N = (f(n)N)^k = (f(n)N)^|G/N|.

But, also we have e=f(n)^k=f(n^k). Since f is injective, n^k=e. k must be the order of n (for t<=k and n^t =e implies f(n)^t=e implies k divides t implies k=t). Therefore, k divides |N| also. Therefore, k=1 and your identity reads N=f(n)N whence f(n) is in N. As f is bijective, f(N) must equal N.
 
Last edited:
oh, I forgot to thank you. Thanks for your help.
 
No problem.

By the way, the reason I wrote my solution the way I did was because I wanted to proceed slightly differently. Here's how I would've continued my post: "So o(f(n)N) divides k and |G/N|. But k divides |f(N)| (by Lagrange), and |f(N)| and |G/N| are coprime. Thus o(f(n)N)=1, and consequently f(n) is in N. It follows that f(N) is a subset of N, and hence all of N since |f(N)|=|N|."
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 26 ·
Replies
26
Views
841
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
513
  • · Replies 3 ·
Replies
3
Views
863
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 17 ·
Replies
17
Views
6K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
3
Views
3K