Undergrad Avoiding structure collapse due to dark energy?

Click For Summary
SUMMARY

The discussion centers on the impact of dark energy on the stability of galaxies and larger structures against gravitational collapse. Participants agree that while dark energy may slightly slow down collapse processes, it cannot prevent them entirely, especially at the scale of individual galaxies. The conversation references a paper that explores the equation of state parameter, denoted as ##w##, which could influence structure formation. Ultimately, the consensus is that dark energy enhances the evaporation of structures rather than stabilizing them indefinitely.

PREREQUISITES
  • Understanding of dark energy and its role in cosmology.
  • Familiarity with gravitational forces and their effects on celestial bodies.
  • Knowledge of the equation of state parameter ##w## in cosmological models.
  • Basic concepts of structure formation in the universe.
NEXT STEPS
  • Read the paper referenced in the discussion for detailed calculations on dark energy's effects.
  • Explore the implications of different values of the dark energy equation of state parameter ##w##.
  • Investigate the processes of gravitational collapse in larger structures like galaxy clusters.
  • Study the relationship between tidal forces and gravitational waves in the context of galaxy dynamics.
USEFUL FOR

Astronomers, astrophysicists, and cosmologists interested in the dynamics of galaxies and the influence of dark energy on cosmic structures.

Suekdccia
Messages
352
Reaction score
30
TL;DR
Avoiding structure collapse due to dark energy?
I had a question about this paper (https://arxiv.org/abs/1401.3742)

There, the authors indicate that dark energy competes against gravity in oversdensities and can slow down or even prevent their collapse.

I have a simple question about this:

Galaxies will in principle evaporate their outer layers and their innermost ones will collapse under graviational forces and the relaxation of the orbits around the galactic nucleus through tidal forces and graviational waves emission. However, can there be galaxies (or other structrues) where the "fight" between gravity and dark energy can stabilize these structures indefinetely preventing their evaporation and gravitational collapse (assuming no external perturbations occur) despite the influence of tidal forces, gravitational waves emission...etc?
 
Space news on Phys.org
Intuitively I would say that the dark energy effect on the distance scale of a single galaxy is too small to prevent the processes you describe. (Note that putting a star on an escape trajectory due to interactions with other stars should be slightly easier in the presence of dark energy.) However, I have not done the math. I'll read the paper you reference when I get a chance to see if there are any relevant calculations in it.
 
PeterDonis said:
Intuitively I would say that the dark energy effect on the distance scale of a single galaxy is too small to prevent the processes you describe. (Note that putting a star on an escape trajectory due to interactions with other stars should be slightly easier in the presence of dark energy.) However, I have not done the math. I'll read the paper you reference when I get a chance to see if there are any relevant calculations in it.
Thank you. Perhaps this would be more suitable for bigger structures like clusters?
 
Suekdccia said:
Perhaps this would be more suitable for bigger structures like clusters?
Possibly. However, what I said about putting an object on an escape trajectory would be even more true for a bigger structure. So I don't think dark energy can suppress "evaporation"; instead it should enhance it.

As for gravitational collapse, a bigger structure isn't going to collapse all at once, its collapse will be galaxy by galaxy. So you would have to look at the effects of dark energy on a much smaller scale with regard to collapse. On that scale, it might slow down the collapse by a small amount, but it won't prevent it.

Of course, it's possible that a dark energy equation of state with a ##w## much less than ##-1## might change things; the paper is basically trying to constrain the possible values of ##w## by looking at structure formation and stability. But given that ##w## is within the range they find to be compatible with the structures we see today, I don't think dark energy can significantly change the longer term processes you describe; those processes (at least if we want them to go to completion, i.e., structures like the ones we see today are entirely either evaporated or collapsed) happen on a time scale that we haven't probed yet (the universe isn't old enough), so we can't rule them out just because dark energy is within the range that is consistent with the structures we see today.
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 19 ·
Replies
19
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 134 ·
5
Replies
134
Views
11K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 5 ·
Replies
5
Views
3K
  • · Replies 10 ·
Replies
10
Views
4K
  • · Replies 6 ·
Replies
6
Views
3K