MHB -b.2.2.18 IVP DE complete the square?

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\quad\displaystyle
y^{\prime}=
\frac{e^{-x}-e^x}{3+4y},
\quad y(0)=1$
rewrite
$\frac{dy}{dx}=\frac{e^{-x}-e^x}{3+4y}$
separate
$3+4y \, dy = e^{-x}-e^x \, dx$
integrate
$2y^2+3y=-e^{-x}-e^x+c$
well if so far ok presume complete the square ?book answer
$(a)\quad y=-\frac{3}{4}+\frac{1}{4}
+\sqrt{65-8e^x-8e^{-x}}$\\
$(c)\quad|x|<2.0794\textit{ approximately}$
 
Last edited:
Physics news on Phys.org
karush said:
$\quad\displaystyle
y^{\prime}=
\frac{e^{-x}-e^x}{3+4y},
\quad y(0)=1$
rewrite
$\frac{dy}{dx}=\frac{e^{-x}-e^x}{3+4y}$
separate
$3+4y \, dy = e^{-x}-e^x \, dx$
integrate
$2y^2+3y=-e^{-x}-e^x+c$
well if so far ok presume complete the square ?book answer
$(a)\quad y=-\frac{3}{4}+\frac{1}{4}
+\sqrt{65-8e^x-8e^{-x}}$\\
$(c)\quad|x|<2.0794\textit{ approximately}$

$y(0) = 1 \implies 5 = -2+c \implies c = 7$

$y^2 + \dfrac{3}{2}y = \dfrac{-e^{-x} -e^x + 7}{2}$

$y^2 + \dfrac{3}{2}y + \dfrac{9}{16} = \dfrac{-e^{-x} -e^x + 7}{2} + \dfrac{9}{16} $

$\left(y+\dfrac{3}{4}\right)^2 = \dfrac{-8e^{-x}-8e^x+65}{16}$

$y+\dfrac{3}{4} = \dfrac{\sqrt{-8e^{-x}-8e^x+65}}{4}$

check the book "answer" ...

$y = \dfrac{-3 + \sqrt{-8e^{-x}-8e^x+65}}{4}$
 
book answer

View attachment 8681

thanks for all the steps

i get lost on the initial value thing

I don't see where the 5 comes from?
 

Attachments

  • 18.png
    18.png
    3.7 KB · Views: 127
Last edited:
karush said:
book answer
thanks for all the steps

i get lost on the initial value thing

I don't see where the 5 comes from?

$2y^2+3y=-e^{-x}-e^x+C$

note $y(0)=1 \implies y = 1 \, \text{when} \, x=0$

$2(1)^2 + 3(1) = -e^{-0}-e^0+C$

... see it now?
 
There is the following linear Volterra equation of the second kind $$ y(x)+\int_{0}^{x} K(x-s) y(s)\,{\rm d}s = 1 $$ with kernel $$ K(x-s) = 1 - 4 \sum_{n=1}^{\infty} \dfrac{1}{\lambda_n^2} e^{-\beta \lambda_n^2 (x-s)} $$ where $y(0)=1$, $\beta>0$ and $\lambda_n$ is the $n$-th positive root of the equation $J_0(x)=0$ (here $n$ is a natural number that numbers these positive roots in the order of increasing their values), $J_0(x)$ is the Bessel function of the first kind of zero order. I...
Are there any good visualization tutorials, written or video, that show graphically how separation of variables works? I particularly have the time-independent Schrodinger Equation in mind. There are hundreds of demonstrations out there which essentially distill to copies of one another. However I am trying to visualize in my mind how this process looks graphically - for example plotting t on one axis and x on the other for f(x,t). I have seen other good visual representations of...

Similar threads

Replies
5
Views
1K
Replies
5
Views
2K
Replies
3
Views
1K
Replies
4
Views
2K
Replies
5
Views
2K
Replies
2
Views
1K
Replies
9
Views
2K
Back
Top