-b.2.2.18 IVP DE complete the square?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Complete Ivp Square
Click For Summary
SUMMARY

The discussion focuses on solving the initial value problem (IVP) defined by the differential equation \( y' = \frac{e^{-x} - e^x}{3 + 4y} \) with the initial condition \( y(0) = 1 \). Participants detail the steps of separating variables, integrating, and completing the square to derive the solution. The final expression for \( y \) is confirmed as \( y = \frac{-3 + \sqrt{-8e^{-x} - 8e^x + 65}}{4} \), aligning with the book's answer. The initial value \( c \) is calculated to be 7 based on the condition \( y(0) = 1 \).

PREREQUISITES
  • Understanding of first-order differential equations
  • Knowledge of separation of variables technique
  • Familiarity with integration of exponential functions
  • Ability to complete the square in algebraic expressions
NEXT STEPS
  • Study the method of separation of variables in differential equations
  • Learn about integrating factors for solving linear differential equations
  • Explore the concept of initial value problems in differential equations
  • Investigate the applications of exponential functions in differential equations
USEFUL FOR

Mathematics students, educators, and professionals working with differential equations, particularly those focusing on initial value problems and algebraic manipulation techniques.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\quad\displaystyle
y^{\prime}=
\frac{e^{-x}-e^x}{3+4y},
\quad y(0)=1$
rewrite
$\frac{dy}{dx}=\frac{e^{-x}-e^x}{3+4y}$
separate
$3+4y \, dy = e^{-x}-e^x \, dx$
integrate
$2y^2+3y=-e^{-x}-e^x+c$
well if so far ok presume complete the square ?book answer
$(a)\quad y=-\frac{3}{4}+\frac{1}{4}
+\sqrt{65-8e^x-8e^{-x}}$\\
$(c)\quad|x|<2.0794\textit{ approximately}$
 
Last edited:
Physics news on Phys.org
karush said:
$\quad\displaystyle
y^{\prime}=
\frac{e^{-x}-e^x}{3+4y},
\quad y(0)=1$
rewrite
$\frac{dy}{dx}=\frac{e^{-x}-e^x}{3+4y}$
separate
$3+4y \, dy = e^{-x}-e^x \, dx$
integrate
$2y^2+3y=-e^{-x}-e^x+c$
well if so far ok presume complete the square ?book answer
$(a)\quad y=-\frac{3}{4}+\frac{1}{4}
+\sqrt{65-8e^x-8e^{-x}}$\\
$(c)\quad|x|<2.0794\textit{ approximately}$

$y(0) = 1 \implies 5 = -2+c \implies c = 7$

$y^2 + \dfrac{3}{2}y = \dfrac{-e^{-x} -e^x + 7}{2}$

$y^2 + \dfrac{3}{2}y + \dfrac{9}{16} = \dfrac{-e^{-x} -e^x + 7}{2} + \dfrac{9}{16} $

$\left(y+\dfrac{3}{4}\right)^2 = \dfrac{-8e^{-x}-8e^x+65}{16}$

$y+\dfrac{3}{4} = \dfrac{\sqrt{-8e^{-x}-8e^x+65}}{4}$

check the book "answer" ...

$y = \dfrac{-3 + \sqrt{-8e^{-x}-8e^x+65}}{4}$
 
book answer

View attachment 8681

thanks for all the steps

i get lost on the initial value thing

I don't see where the 5 comes from?
 

Attachments

  • 18.png
    18.png
    3.7 KB · Views: 139
Last edited:
karush said:
book answer
thanks for all the steps

i get lost on the initial value thing

I don't see where the 5 comes from?

$2y^2+3y=-e^{-x}-e^x+C$

note $y(0)=1 \implies y = 1 \, \text{when} \, x=0$

$2(1)^2 + 3(1) = -e^{-0}-e^0+C$

... see it now?
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
6
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
7
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K