-b.2.2.18 IVP DE complete the square?

  • Context: MHB 
  • Thread starter Thread starter karush
  • Start date Start date
  • Tags Tags
    Complete Ivp Square
Click For Summary

Discussion Overview

The discussion revolves around solving an initial value problem (IVP) involving a differential equation. Participants explore the process of separating variables, integrating, and completing the square to find a solution for the equation given the initial condition.

Discussion Character

  • Mathematical reasoning
  • Homework-related
  • Technical explanation

Main Points Raised

  • Participants rewrite the differential equation and separate variables, leading to the integral form.
  • There is a proposal to complete the square in the integration process, with reference to a book answer.
  • One participant calculates the constant \( c \) using the initial condition \( y(0) = 1 \), arriving at \( c = 7 \).
  • Another participant expresses confusion regarding the derivation of the number 5 in the context of the initial value.
  • Clarification is provided that \( 5 \) comes from substituting \( y = 1 \) into the integrated equation.

Areas of Agreement / Disagreement

Participants generally agree on the steps taken to solve the differential equation, but there is some confusion regarding the initial condition and the resulting calculations, indicating a lack of consensus on that specific aspect.

Contextual Notes

Participants express uncertainty about the initial value application and the derivation of certain constants, which may depend on interpretations of the integration process.

karush
Gold Member
MHB
Messages
3,240
Reaction score
5
$\quad\displaystyle
y^{\prime}=
\frac{e^{-x}-e^x}{3+4y},
\quad y(0)=1$
rewrite
$\frac{dy}{dx}=\frac{e^{-x}-e^x}{3+4y}$
separate
$3+4y \, dy = e^{-x}-e^x \, dx$
integrate
$2y^2+3y=-e^{-x}-e^x+c$
well if so far ok presume complete the square ?book answer
$(a)\quad y=-\frac{3}{4}+\frac{1}{4}
+\sqrt{65-8e^x-8e^{-x}}$\\
$(c)\quad|x|<2.0794\textit{ approximately}$
 
Last edited:
Physics news on Phys.org
karush said:
$\quad\displaystyle
y^{\prime}=
\frac{e^{-x}-e^x}{3+4y},
\quad y(0)=1$
rewrite
$\frac{dy}{dx}=\frac{e^{-x}-e^x}{3+4y}$
separate
$3+4y \, dy = e^{-x}-e^x \, dx$
integrate
$2y^2+3y=-e^{-x}-e^x+c$
well if so far ok presume complete the square ?book answer
$(a)\quad y=-\frac{3}{4}+\frac{1}{4}
+\sqrt{65-8e^x-8e^{-x}}$\\
$(c)\quad|x|<2.0794\textit{ approximately}$

$y(0) = 1 \implies 5 = -2+c \implies c = 7$

$y^2 + \dfrac{3}{2}y = \dfrac{-e^{-x} -e^x + 7}{2}$

$y^2 + \dfrac{3}{2}y + \dfrac{9}{16} = \dfrac{-e^{-x} -e^x + 7}{2} + \dfrac{9}{16} $

$\left(y+\dfrac{3}{4}\right)^2 = \dfrac{-8e^{-x}-8e^x+65}{16}$

$y+\dfrac{3}{4} = \dfrac{\sqrt{-8e^{-x}-8e^x+65}}{4}$

check the book "answer" ...

$y = \dfrac{-3 + \sqrt{-8e^{-x}-8e^x+65}}{4}$
 
book answer

View attachment 8681

thanks for all the steps

i get lost on the initial value thing

I don't see where the 5 comes from?
 

Attachments

  • 18.png
    18.png
    3.7 KB · Views: 144
Last edited:
karush said:
book answer
thanks for all the steps

i get lost on the initial value thing

I don't see where the 5 comes from?

$2y^2+3y=-e^{-x}-e^x+C$

note $y(0)=1 \implies y = 1 \, \text{when} \, x=0$

$2(1)^2 + 3(1) = -e^{-0}-e^0+C$

... see it now?
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
Replies
6
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
7
Views
4K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K