Basic feasible solution definition and example

  • Context: MHB 
  • Thread starter Thread starter evinda
  • Start date Start date
Click For Summary
SUMMARY

The discussion centers on the definition and examples of a basic feasible solution in linear programming. A basic feasible solution is defined as a vector \( x \in F \subset \mathbb{R}^n \) where the non-zero coordinates correspond to linearly independent columns of the matrix \( A \). The participants explore the implications of having at most \( m \) non-zero coordinates when \( r(A) = m < n \), confirming that exceeding \( m \) leads to linear dependence. The canonical form of a linear programming problem is also discussed, highlighting how to identify basic feasible solutions from the intersection of constraint lines.

PREREQUISITES
  • Understanding of linear programming concepts
  • Familiarity with matrix notation and linear independence
  • Knowledge of canonical forms in linear programming
  • Basic skills in solving systems of linear equations
NEXT STEPS
  • Study the Simplex Method for solving linear programming problems
  • Learn about duality in linear programming
  • Explore the concept of convex sets and their relation to feasible solutions
  • Investigate the role of slack variables in converting inequalities to equalities
USEFUL FOR

Students and professionals in operations research, optimization analysts, and anyone involved in solving linear programming problems will benefit from this discussion.

evinda
Gold Member
MHB
Messages
3,741
Reaction score
0
Hello! (Wave)

Basic feasible solution

$$\max (c_1 x_1+ \dots + c_n x_n) \\ Ax=b, x=(x_1, \dots , x_n) , b=(b_1, \dots, b_m) \\ x_i \geq 0, i=1, \dots, n , b_j \geq 0, j=1,\dots, m \\ \\ A=\begin{pmatrix}
a_{11} & a_{12} & \dots & a_{1n} \\
a_{21} & a_{22} & \dots & a_{2n} \\
\dots & & & & \\
\dots & & & & \\
a_{m1} & a_{m2} &\dots &a_{mn}
\end{pmatrix} \\ \\ P_1=\begin{bmatrix}
a_{11}\\
\dots\\
\dots\\
a_{m1}\\

\end{bmatrix}, \dots, P_n=\begin{bmatrix}
a_{1n}\\
\dots\\
\dots\\
a_{mn}\\

\end{bmatrix}$$

Then the equation $Ax=b$ can be equivalently written as $P_1 x_1+ \dots+ P_n x_n= \overline{b}, \overline{b}=\begin{bmatrix}
b_1\\
\dots\\
\dots\\
b_m\\
\end{bmatrix}$(at most $m$ lineraly independent columns)Definition:

If $x \in F \subset \mathbb{R}^n, x=(x_1, \dots, x_n)$ and the non-zero coordinates of $x$ correspond to linearly independent columns of the matrix $A$ then $x$ is called basic feasible solution.
For example if $x=(x_1, x_2, \dots, x_{m-1},0,0,0, \dots, 0) \in F$ and the columns that correspond to the non-zero coordinates, i.e. $P_1, \dots, P_{n-1}$ are linearly independent then $x$ is a basic feasible solution.Could you explain me the definition of the basic feasible solution and also the example? (Thinking)
 
Physics news on Phys.org
I think that I understood the definition.
Then there is the following remark:

If $r(A)=m<n$, if $x$ is a basic feasible solution then $x$ has at most $m$ non-zero coordinates.

Does this hold because if $x$ has for example $m+1$ non-zero coordinates then $P_{m+1}$ will be linearly dependent with $P_i$ for some $i=1, \dots, m$ ?
Why is it possible that $x$ has less than $m$ non-zero coordinates? (Thinking)
 
evinda said:
Could you explain me the definition of the basic feasible solution and also the example? (Thinking)

evinda said:
I think that I understood the definition.
Then there is the following remark:

If $r(A)=m<n$, if $x$ is a basic feasible solution then $x$ has at most $m$ non-zero coordinates.

Does this hold because if $x$ has for example $m+1$ non-zero coordinates then $P_{m+1}$ will be linearly dependent with $P_i$ for some $i=1, \dots, m$ ?
Why is it possible that $x$ has less than $m$ non-zero coordinates? (Thinking)

Hi evinda! (Smile)

Suppose we look at the following linear programming problem:
$$\begin{array}{ll}x &\le 2 \\ 2x+3y&\le 6\end{array}$$
[desmos="-1,4,-1,3"]0\le x\le \left\{0\le y\le \frac{2}{3}:2,\frac{2}{3}\le y\le 2:3-\frac{3}{2}y\right\};(0,0),(1,0),(2,0),(2,\frac{2}{3}),(1,1);[/desmos]

We can bring it in canonical form as:
$$\begin{array}{rrrrrrrrr}
x &&&+&c &&&=& 2 \\ 2x&+&3y&&&+&d&=&6
\end{array}$$

I have marked the points $(0,0),(1,0),(2,0),(2,\frac{2}{3}),(1,1)$.
Can you tell if they are basic feasible solutions? (Wondering)
 
I like Serena said:
Hi evinda! (Smile)

Suppose we look at the following linear programming problem:
$$\begin{array}{ll}x &\le 2 \\ 2x+3y&\le 6\end{array}$$We can bring it in canonical form as:
$$\begin{array}{rrrrrrrrr}
x &&&+&c &&&=& 2 \\ 2x&+&3y&&&+&d&=&6
\end{array}$$

I have marked the points $(0,0),(1,0),(2,0),(2,\frac{2}{3}),(1,1)$.
Can you tell if they are basic feasible solutions? (Wondering)

So if we are given these points do we look at the matrix $A$ of the linear programming problem when it is not in its canonical form? (Thinking)

If we have this linear programming problem, we have: $A=\begin{bmatrix}
1 & 0 & 1 & 0\\
2 & 3 & 0 & 1
\end{bmatrix}$ and then $r(A)=2<4$.

$P_1=\begin{bmatrix}
1\\
2
\end{bmatrix}, P_2=\begin{bmatrix}
0\\
3
\end{bmatrix}, P_3=\begin{bmatrix}
1\\
0
\end{bmatrix}, P_4=\begin{bmatrix}
0\\
1
\end{bmatrix}$

and the problem can be written equivalently as $P_1 x+ P_2 y+ P_3 c+ P_4 d= \begin{bmatrix}
2\\
6
\end{bmatrix}$.

$x \leq 2 \\ y \leq 2 \\ c \leq 2 \\ d \leq 6$
so the set of feasible solutions is bounded.

Then we look at the $6$ possible 2-linaerly independent columns.

  • $P_1, P_2$ are linearly independent:

    $P_1 x+P_2 y= \begin{bmatrix}
    2\\
    6
    \end{bmatrix} \Rightarrow x=2, y=\frac{2}{3}$
  • $P_1, P_3$ are linearly independent:

    $P_1 x+P_3 c= \begin{bmatrix}
    2\\
    6
    \end{bmatrix} \Rightarrow x=3, c=-1$ -> we reject it.
  • $P_1, P_4$ are linearly independent:

    $P_1 x+P_4 d= \begin{bmatrix}
    2\\
    6
    \end{bmatrix} \Rightarrow x=2, d=2$
  • $P_3, P_4$ are linearly independent:

    $P_3 x+P_4 d= \begin{bmatrix}
    2\\
    6
    \end{bmatrix} \Rightarrow c=2, d=6$
  • $P_2, P_3$ are linearly independent:

    $P_2 y+P_3 c= \begin{bmatrix}
    2\\
    6
    \end{bmatrix} \Rightarrow c=2, y=2$
  • $P_2, P_4$ are not linearly independent.

Is it right so far? Do we set in each of the above cases the other variables that are not used equal to $0$ ? (Thinking)
 
evinda said:
So if we are given these points do we look at the matrix $A$ of the linear programming problem when it is not in its canonical form? (Thinking)

What do you mean? :confused:

Is it right so far? Do we set in each of the above cases the other variables that are not used equal to $0$ ? (Thinking)

Yes and yes. (Nod)

Note that we have 4 lines: $x=0, y=0, x=2, 2x+3y=6$.
You have found the intersections of each pair of lines, each of which corresponds to a possible basic feasible solution.

However, $x=0$ and $x=2$ do not intersect, which corresponds to the fact that the corresponding $P_i$ are linearly dependent (the lines are parallel).
And $y=0$ and $2x+3y=6$ do intersect, but their intersection $(3,0)$ is outside of the feasible region.

So the basic feasible solutions are exactly the corner points of the feasible region. (Mmm)
 

Similar threads

  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 32 ·
2
Replies
32
Views
5K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 27 ·
Replies
27
Views
2K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 11 ·
Replies
11
Views
3K