MHB Bernoulli Equation Checking the solution

Click For Summary
The discussion focuses on solving the Bernoulli equation given by $(ye^{-2x}+y^3)dx-e^{-2x}dy=0$. The transformation of variables and the application of an integrating factor lead to the solution $v=-\frac{1}{2}e^{2x}+Ce^{-2x}$, where $v={y}^{-2}$. The final expression for $y$ is derived as ${y}^{-2}=-\frac{1}{2}e^{2x}+Ce^{-2x}$. Verification of the solution using Mathematica confirms its validity, as substituting back into the original differential equation yields zero. This indicates that the solution is correct and reliable.
cbarker1
Gold Member
MHB
Messages
345
Reaction score
23
Dear Everyone,

I need someone to check the solution,

The question identity and then solve,

The Equation is Bernoulli
To Solve:

$(ye^{-2x}+y^3)dx-e^{-2x}dy=0$

$\frac{1}{dx}(ye^{x}+y^3)dx=\frac{1}{dx}(e^{2x}dy)$

$ye^{-2x}+y^3=e^{-2x}\d{y}{x}$

$e^{-2x}y^{\prime}-ye^{-2x}=y^3$

Let $v={y}^{1-3}$

$v={y}^{-2}\implies {v}^{-\frac{1}{2}}=y$

$-\frac{1}{2}{v}^{-\frac{3}{2}}v^{\prime}=y^{\prime}$

$-\frac{1}{2}{v}^{-\frac{3}{2}}e^{-2x}v^{\prime}-e^{-2x}{v}^{-\frac{1}{2}}={\left\{{v}^{-\frac{1}{2}}\right\}}^{3}\implies-\frac{1}{2}{v}^{-\frac{3}{2}}e^{-2x}v^{\prime}-e^{-2x}{v}^{-\frac{1}{2}}={v}^{-\frac{3}{2}}$

${v}^{\frac{3}{2}}\left\{-\frac{1}{2}{v}^{-\frac{3}{2}}e^{-2x}v^{\prime}-e^{-2x}{v}^{-\frac{1}{2}}\right\}={v}^{-\frac{3}{2}}{v}^{\frac{3}{2}}$

$e^{-2x}v^{\prime}+2e^{-2x}v=-2$

$e^{2x}\left\{e^{-2x}v^{\prime}+2e^{-2x}v\right\}=-2e^{2x}$

$v^{\prime}+2v=-2e^{2x}$
Finding the Integrating Factor:

$\mu(x)=e^{\int2dx}=e^{2x}$

$e^{2x}v^{\prime}+2e^{2x}v=-2e^{2x}e^{2x}$

$\left[e^{2x}v\right]^{\prime}=-2e^{4x}$

$\int\left[e^{2x}v\right]^{\prime}=\int-2e^{4x}dx$

$e^{2x}v=-\frac{1}{2}e^{4x}+C$

$v=-\frac{1}{2}e^{2x}+Ce^{-2x}$

${y}^{-2}=-\frac{1}{2}e^{2x}+Ce^{-2x}$
 
Physics news on Phys.org
The cool thing about solving DE's is that you always have a good, easy, reliable way to check your answer: plug back into the DE. In your case, the Mathematica code
Code:
y[x_]=(-(1/2)*Exp[2x]+C[1] Exp[-2x])^(-1/2) 
Simplify[y[x] Exp[-2x]+(y[x])^3-Exp[-2x]y'[x]]
produced a zero, so I would say you certainly found a solution!
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
Replies
9
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K