MHB Bias of functions defined on samples for population

mathinator
Messages
2
Reaction score
0
Let X1, · · · , Xn be a simple random sample from some finite population of values {x1, · · · xN }.
Is the estimate $$\frac{1}{n} \sum_{i}^{n} f(Xi)$$ always unbiased for $$\frac{1}{N} \sum_{i}^{N} f(xi)$$ no matter what f is?My thinking: I don't think all f's are unbiased, because not all sample parameters (ex: variance, or s^2) are unbiased for the population parameter (unless they are corrected for finite population sampling). I am confused if I am interpreting the question correctly, i.e f refers to parameters we can kind about the population :(

Thank you for your help in advance!
 
Physics news on Phys.org
Hi mathinator,

Welcome to MHB! :)

Yep I fully agree with your thought process. The sample variance correction is a great example of how this won't work for any arbitrary $f$. I think one counter-example is sufficient to wrap this problem, unless more detail is explicitly specified.
 
Jameson said:
Hi mathinator,

Welcome to MHB! :)

Yep I fully agree with your thought process. The sample variance correction is a great example of how this won't work for any arbitrary $f$. I think one counter-example is sufficient to wrap this problem, unless more detail is explicitly specified.

Thank you for your response!
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...
Back
Top