Black holes: merged remnants have similar spin - why?

Click For Summary

Discussion Overview

The discussion revolves around the phenomenon of black hole mergers and the resulting spin of the merged black holes, specifically focusing on why the spin appears to cluster around a value of approximately a=0.7. Participants explore potential explanations for this observation, including the influence of orbital frequency before merging and the detection limitations of current instruments.

Discussion Character

  • Exploratory
  • Debate/contested
  • Technical explanation

Main Points Raised

  • One participant suggests that the orbital frequency before the merge may dictate the resulting spin, proposing an intrinsic physics reason for the similarity in final spins across different black hole masses.
  • Another participant raises the possibility that the observed spin of about a=0.7 could be a result of the sensitivity of detection instruments, implying that only certain properties are observable.
  • Several participants discuss the maximum spin limit of black holes, noting that a spin greater than 1 would lead to a naked singularity, and express surprise at the narrow range of final spins after mergers.
  • There is mention of a potential bias in the observed spin values of merged black holes, with one participant referencing a paper that suggests binary black holes formed through different processes may exhibit varying spins.
  • Participants express uncertainty regarding the methods used to estimate the spins of supermassive black holes (SMBHs) and the challenges in probing smaller black holes.

Areas of Agreement / Disagreement

Participants do not reach a consensus on the reasons behind the similar spins of merged black holes. Multiple competing views are presented, and the discussion remains unresolved regarding the underlying mechanisms influencing the observed spin values.

Contextual Notes

Participants highlight limitations in current understanding, including the dependence on detection capabilities and the complexities involved in estimating parameters for distant black holes.

Vrbic
Messages
400
Reaction score
18
Hello everyone,

I hope I'm asking in the correct section, if not please point me.

I read a list of gravitational wave detection. I focused on black hole - black hole events and I noticed the resulting black hole spin is very similar about a=0.7. I didn't find any explanation for this.

List of events you find here.

My two ideas are:
1) The first idea was the orbital frequency before merge gives the resulting spin and there is some intrinsic physics reason why this orbital frequency (in the final stage of merge) is very same for all masses of black holes.

2) The second idea is connected to the sensitivity of our instruments. We see a resulting spin of about a=0.7 because we are able to detect only sources with such properties (frequency of gravitational waves).

Is one of these ideas correct or I'm out? :-)

Thank you for your comments.
 
  • Like
Likes   Reactions: vanhees71, PeroK and Drakkith
Astronomy news on Phys.org
You need to give a reference. I don't know what "a=0.7" means, and I suspect you are using spin in a non-standard way.
 
Hornbein said:
You need to give a reference. I don't know what "a=0.7" means, and I suspect you are using spin in a non-standard way.
Reference is in the list of events here. There is also defined a dimensionless black hole spin parameter as a=cj/(GM^2), where c and G are the speed of light and gravitational constant, j is angular momentum and M is the mass of the object. This "a" is mostly connected with a spin of Kerr's black hole.
 
  • Like
Likes   Reactions: vanhees71
Vrbic said:
Reference is in the list of events here. There is also defined a dimensionless black hole spin parameter as a=cj/(GM^2), where c and G are the speed of light and gravitational constant, j is angular momentum and M is the mass of the object. This "a" is mostly connected with a spin of Kerr's black hole.
Aha you did give a reference, sorry I missed that. Yes that is interesting, that the spin of the remnants is always about the same.

According to this the absolute maximum value of a is 1, and it is not unusual for supermassive black holes to reach this limit. No smbh had less than 0.6.
https://astronomy.stackexchange.com/questions/20276/maximum-spin-rate-of-a-black-hole
 
Last edited:
Hornbein said:
I have a vague memory that there is some similar limit on the spin of black holes. Any faster and the singularity would be exposed. At any rate surely there is a limit of some nature. There is so much energy in a black hole collision I would expect that this limit is usually reached.
Thank you for your comments. The limit of a (standard - Kerr's) rotating black hole is "a=1", if greater, there is no horizon and we call it naked singularity as you mentioned. Actually, the guesses on the rotation of supermassive black holes in many active galactic nuclei are about "a=0.99". So, it was surprising for me very narrow window of final spin after the merge of two black holes.
 
Vrbic said:
Thank you for your comments. The limit of a (standard - Kerr's) rotating black hole is "a=1", if greater, there is no horizon and we call it naked singularity as you mentioned. Actually, the guesses on the rotation of supermassive black holes in many active galactic nuclei are about "a=0.99". So, it was surprising for me very narrow window of final spin after the merge of two black holes.
Yes the smaller merged holes don't reach the limit. It is a puzzle.
 
Hornbein said:
I have a vague memory that there is some similar limit on the spin of black holes. Any faster and the singularity would be exposed. At any rate surely there is a limit of some nature. There is so much energy in a black hole collision I would expect that this limit is usually reached.
No, the limit is the angular momentum to mass ratio, which is effectively what ##a## is. It cannot exceed 1 in geometrised units.

@Vrbic, I suspect there's a bias in the remnants' ##a## values. I found the paper below which implies that the expectation is that binary stats becoming binary black holes then merging will have very low ##a##, while binaries formed by capture after becoming black holes can have almost any ##a##.
https://iopscience.iop.org/article/10.3847/2041-8213/ac2f3c

I don't know about SMBHs, but if they mostly grow by absorbing matter from their parent galaxy then pretty much every merger would seem likely to push up ##a##.
 
Last edited:
  • Like
Likes   Reactions: vanhees71
Ibix said:
@Vrbic, I suspect there's a bias in the remnants' ##a## values. I found the paper below which implies that the expectation is that binary stats becoming binary black holes then merging will have very low ##a##, while binaries formed by capture after becoming black holes can have almost any ##a##.
https://iopscience.iop.org/article/10.3847/2041-8213/ac2f3c
Nice, thank you for the interesting reference.
Ibix said:
I don't know about SMBHs, but if they mostly grow by absorbing matter from their parent galaxy then pretty much every merger would seem likely to pish up ##a##.
Or these guesses are wrong. I suppose it is very difficult to do such a guess.
 
Vrbic said:
Or these guesses are wrong. I suppose it is very difficult to do such a guess.
You can actually look at the dynamics of stars in close orbits around SMBHs, which is one way to estimate their parameters. I don't know how precisely that's been done, though. There's less opportunity to probe smaller black holes that way.
 
  • #10
Ibix said:
You can actually look at the dynamics of stars in close orbits around SMBHs, which is one way to estimate their parameters. I don't know how precisely that's been done, though. There's less opportunity to probe smaller black holes that way.
I understand, but I'm not sure if it is possible to do this for very distant sources. It is done for the central black hole in our galaxy (Sgr A*) but I'm not sure how it is for other galaxy centers. I think the guesses I mentioned are based on the position of accretion discs (ISCO position) or the energy of these particles.
 
  • Like
Likes   Reactions: Ibix

Similar threads

  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 7 ·
Replies
7
Views
2K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 53 ·
2
Replies
53
Views
9K
  • · Replies 27 ·
Replies
27
Views
6K
  • · Replies 6 ·
Replies
6
Views
3K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 48 ·
2
Replies
48
Views
6K