A Born's probability in decoherence

Click For Summary
The discussion centers on the application of Born's rule in the context of a quantum measurement involving a spin-1/2 particle, an apparatus, and an observer. It explores where Born's rule should be applied during the measurement process, particularly in relation to the interactions between the system and the apparatus, and between the apparatus and the observer. Participants note that while Born's rule can be applied at either the apparatus or observer level, the presence of error terms complicates its application. The conversation emphasizes that in practice, small error terms can often be neglected, but theoretically, the exact point of application remains ambiguous. Ultimately, the discussion highlights the challenges of reconciling theoretical predictions with practical measurement errors in quantum mechanics.
Sr1
Messages
4
Reaction score
0
TL;DR
How does Born's probability enter the decoherence theory?
Suppose we have a quantum system ##S##, an apparatus ##A##, and an observer, say Alice, ##O##. WLOG let ##S## be a spin-##1/2##particle in a state ##0.6|\uparrow\rangle+0.8|\downarrow\rangle##. The apparatus measure it in the ##\sigma_z## basis. Then the observer sees the result.

According to the decoherence theory, what happens in this measurement process is:

$$

\begin{align}

&\quad \psi_{before}=(0.6|\uparrow\rangle+0.8|\downarrow\rangle)\otimes|A_{init}\rangle\otimes|O_{init}\rangle\\

&\overset{\text{S,A interaction}}{\to}

\big(0.6|\uparrow\rangle(|A_{pointer \uparrow}\rangle+\delta |A_{pointer \downarrow}\rangle)+0.8|\downarrow\rangle(|A_{pointer \downarrow}\rangle+\delta |A_{pointer \uparrow}\rangle)\big)\otimes|O_{init}\rangle \\

&\overset{\text{A,O interaction}}{\to}

\psi_{after}=0.6|\uparrow\rangle|A_{pointer \uparrow}\rangle|\text{Alice thinks she observes}\uparrow\rangle

\\ &\quad\qquad\qquad\qquad\quad

+0.8|\downarrow\rangle|A_{pointer \downarrow}\rangle|\text{Alice thinks she observes}\downarrow\rangle

\\

&\qquad\qquad

+\delta|\uparrow\rangle|A_{\uparrow}\rangle|O_\downarrow\rangle

+\delta|\uparrow\rangle|A_{\downarrow}\rangle|O_\downarrow\rangle

+\delta|\uparrow\rangle|A_{\downarrow}\rangle|O_\uparrow\rangle

+\cdots

+\delta|\uparrow\rangle|A_{\uparrow}\rangle|O_{neither \uparrow nor \downarrow }\rangle

+\cdots

\end{align}
$$
I have included error terms since decoherence takes nonzero time, and ##\delta## may differ at different places. If Alice tells Bob the result of the experiment, then Bob will be entangled with the state written above.

My first question: where does Born's rule play its role in claiming that ##Pr(O_\uparrow)=0.36## and ##Pr(O_\downarrow)=0.64##? In the first step S,A interaction, or in the second step A,O interaction? Suppose afterward Alice communicates with Bob, should we apply Born's rule in the third step Alice,Bob interaction?

My second question: Born's rule claims that if ##\psi_{after}=0.6|\uparrow\rangle|A_{\uparrow}\rangle|O_\uparrow\rangle

+0.8|\downarrow\rangle|A_{\downarrow}\rangle|O_\downarrow\rangle##, then ##Pr(O_\uparrow)=0.36## and ##Pr(O_\downarrow)=0.64## hold. However, in reality, there are error terms of forms ##|\uparrow\rangle|A_{\uparrow}\rangle|O_\downarrow\rangle##, or even ##|\uparrow\rangle|A_{\uparrow}\rangle|\text{Alice is neither }O_{\uparrow} \text{ nor } O_{\downarrow}\rangle##. How should Born's rule deal with those error terms?
 
Physics news on Phys.org
In practice, there is no much difference between applying the Born rule at the apparatus level and at the (conscious) observer level. So you can choose either. If the error terms are sufficiently small, you don't need to worry about them too. Of course, there are always measurement errors, even in classical physics, but if you are not able to quantitatively compute them, you just accept that there are various uncontrollable measurement errors when you compare theory with experiments, and learn to live with them.
 
  • Like
Likes bhobba and pines-demon
I'm actually asking about theory, not practice
 
Sr1 said:
I'm actually asking about theory, not practice
Well, the Born rule is a theory telling how to compute the probability in practice. :oldbiggrin:
More seriously, the quantum theory in its standard minimal form does not tell precisely whether the Born rule should be applied at the apparatus level or the observer level.
 
We often see discussions about what QM and QFT mean, but hardly anything on just how fundamental they are to much of physics. To rectify that, see the following; https://www.cambridge.org/engage/api-gateway/coe/assets/orp/resource/item/66a6a6005101a2ffa86cdd48/original/a-derivation-of-maxwell-s-equations-from-first-principles.pdf 'Somewhat magically, if one then applies local gauge invariance to the Dirac Lagrangian, a field appears, and from this field it is possible to derive Maxwell’s...

Similar threads