QuarkDecay said:
Can someone explain to me how we find it?
Let ##|j_1, m_1\rangle |j_2, m_2\rangle## be the state in which the first system has angular momentum ##j_1## and z-component ##m_1##, and the second system has angular momentum ##j_2## and z-component ##m_2##. Let ##|j, m\rangle## in which the total angular momentum is ##j## and the total z-component is ##m##.
Since the z-component of angular momentum, ##m##, is additive, we know that
##|j_1, m_1\rangle |j_2, m_2\rangle = ## some combination of terms of the form ##|j, m\rangle## where
##|j_1 - j_2| \leq j \leq j_1 + j_2## and
##-j \leq m \leq +j##
To start with, it's clear that if ##m_1 = j_1## and ##m_2 = j_2##, then there is only one possibility:
1. ##|j_1, j_1\rangle |j_2, j_2\rangle = |(j_1 + j_2), (j_1 + j_2)\rangle## (The case with ##j = j_1 + j_2## and ##m = m_1 + m_2##)
Now, we use the lowering operators:
2. ##J^- = J_1^{-} + J_2^{-}##
You use the fact that
3. ##J^{-} |j, m\rangle = \sqrt{j (j+1) - m (m-1)}|j, m-1\rangle##
4. ##J_1^{-} |j_1, m_1\rangle |j_2, m_2\rangle = \sqrt{j_1 (j_1+1) - m_1 (m_1-1)}|j_1, m_1 - 1\rangle |j_2, m_2\rangle##
5. ##J_2^{-} |j_1, m_1\rangle |j_2, m_2\rangle = \sqrt{j_2 (j_2+1) - m_2 (m_2-1)}|j_1, m_1\rangle |j_2, m_2 - 1\rangle##
(##J_1^{-}## doesn't affect ##|j_2, m_2\rangle## and ##J_2^{-}## doesn't affect ##|j_1, m_1\rangle##)
So applying ##J_1^{-} + J_2^{-}## to the left side of equation 1, and applying ##J^{-}## to the right side gives us:
6. ##\sqrt{j_1 (j_1+1) - m_1 (m_1-1)} |j_1, j_1 - 1\rangle |j_2, j_2\rangle ##
##+ \sqrt{j_2 (j_2+1) - m_2 (m_2-1)} |j_1, j_1\rangle |j_2, j_2 - 1\rangle##
##= \sqrt{(j_1 + j _1)(j_1+j_2 +1) - (j_1 + j_2) (j_1 + j_2 -1)} |(j_1 + j_2), (j_1 + j_2 - 1)\rangle##
You can continue using ##J^{-}## to get all the coefficients for ##|j, m\rangle## with ##j = j_1 + j_2##.
Now, let's look at the case where ##j = j_1 + j_2 - 1##. How do you figure out that case? Well, let's look at the case ##j = j_1 + j_2 - 1## and ##m = j_1 + j_2 - 1##. We know that that has to be some combination of ##m_1 = j_1, m_2 = j_2 -1## and ##m_1 = j_1, m_2 = j_2##. Those are the only two ways to get ##m = m_1 + m_2##. So we know that there must be coefficients ##\alpha## and ##\beta## such that:
##\alpha |j_1, j_1 - 1\rangle |j_2, j_1\rangle + \beta |j_1, j_1\rangle |j_2, m_2 - 1\rangle = |(j_1 + j_2 - 1), (j_1 + j_2 - 1)\rangle##
So we have to figure out what ##\alpha## and ##\beta## must be. That's two unknowns. But we also have two constraints: (1) This state must be orthogonal to the state ##|(j_1 + j_2), (j_1 + j_2 - 1)\rangle##, and (2) ##|\alpha|^2 + |\beta|^2 = 1## (it has to be normalized). Those two constraints uniquely determine ##\alpha## and ##\beta## up to an unknown phase factor. (I'm not sure if there is some standard convention for picking the phase).
Once you know ##|j, m\rangle## for the case ##j = j_1 + j_2 - 1##, ##m = j_1 + j_2 - 1##, you can again use the lowering operators to find the states for all other values of ##m##.
Then you can again use orthogonality to find the state ##|j, m\rangle## with ##j = j_1 + j_2 - 2## and ##m = j_1 + j_2 - 2##.
Continuing in this way, you can find all the possibilities for ##|j, m\rangle##.