MHB Calc Help: Find Derivative & Understand Why Answer Wrong

  • Thread starter Thread starter veronica1999
  • Start date Start date
  • Tags Tags
    Derivative
Click For Summary
The discussion revolves around finding the derivative of the function y = csc^(-1)(sec(x)). Participants highlight that the error in the original calculation likely stems from incorrect cancellation during differentiation. The correct derivative is derived using the formula for the derivative of the inverse cosecant function, leading to a result of -1 or +1 depending on the sign of sin(x). The importance of understanding the behavior of trigonometric functions and their inverses in this context is emphasized. Ultimately, the participants clarify the reasoning behind the constant answer for the derivative.
veronica1999
Messages
61
Reaction score
0
I don't understand why my answer is wrong...
 

Attachments

Last edited:
Physics news on Phys.org
Re: find the derivative

Hi Veronica,

It would be a good idea to take some time to learn Latex. We have http://www.mathhelpboards.com/f26/ with some tips here to get you started.

This is what I think you wrote out.
$$y = \csc ^{-1} \left[ \sec(x) \right]$$
Find $y'$. Is that correct? :)
 
Re: find the derivative

Jameson said:
Hi Veronica,

It would be a good idea to take some time to learn Latex. We have http://www.mathhelpboards.com/f26/ with some tips here to get you started.

This is what I think you wrote out.
$$y = \csc ^{-1} \left[ \sec(x) \right]$$
Find $y'$. Is that correct? :)

Yes!
I promise i will learn it soon.
 
Last edited:
Re: find the derivative

veronica1999 said:
Yes!
I promise i will learn it soon.

It's ok, Veronica :)

I really need to head to bed now but I believe your error is in the cancellation. Your second line of in the PDF looks good to me, so if there's an error it seems like it should be with the cancellation. $\tan(x)$ can be negative but $\sqrt{ \left[ \tan(x) \right] ^2}$ cannot.

Someone will be along to help you soon.
 
Re: find the derivative

veronica1999 said:
I don't understand why my answer is wrong...

Operating as follows...

$\displaystyle y= \csc^{-1} (\sec x) \implies \csc y = \frac{1}{\cos x} \implies \sin y = \cos x \implies y = \sin^{-1} (\cos x)$

... You have to operate on more comfortable inverse trigonometric functions...

Kind regards

$\chi$ $\sigma$
 
Re: find the derivative

Hello, veronica1999!

I can't open your file, but I'll give it a try.

\text{Differentiate: }\:y \:=\:\csc^{-1}(\sec x)
\text{Formula: }\:\text{If }y \:=\:\csc^{-1}u,\,\text{then: }\:y' \:=\:\frac{-u'}{u\sqrt{u^2-1}}

\text{We have: }\:y \:=\:\csc^{-1}(\sec x)

\text{Then: }\:y' \;=\;\frac{-\sec x\tan x}{\sec x\sqrt{\sec^2x-1}} \;=\;\frac{-\sec x\tan x}{\sec x\tan x} \;=\;-1
 
Re: find the derivative

This is a surprisingly tricky problem. The first thing to notice is that $$\frac d{dx}(\operatorname{arccsc} x) = \frac{-1}{|x|\sqrt{x^2-1}}$$. (See here for example, though there are several web sites that carelessly give that formula without the mod signs on the $x$ in the denominator.) Therefore $$\frac d{dx}\bigl(\operatorname{arccsc}(\sec x)\bigr) = \frac{-\sec x\tan x}{|\sec x|\sqrt{\sec^2 x-1}} = \frac{-\sec x\tan x}{|\sec x\tan x|}.$$ Next, $\sec x\tan x = \sin x\sec^2x$, and $\sec^2x$ is always positive. So we can cancel a factor $\sec^2x$ from the top and bottom of that last displayed fraction, to get $$\frac d{dx}\bigl(\operatorname{arccsc}(\sec x)\bigr) = \frac{-\sin x}{|\sin x|} = \begin{cases}-1 & \text{if }\sin x>0,\\ +1 & \text{if }\sin x<0.\end{cases}$$
 
Re: find the derivative

Opalg said:
This is a surprisingly tricky problem. The first thing to notice is that $$\frac d{dx}(\operatorname{arccsc} x) = \frac{-1}{|x|\sqrt{x^2-1}}$$. (See here for example, though there are several web sites that carelessly give that formula without the mod signs on the $x$ in the denominator.) Therefore $$\frac d{dx}\bigl(\operatorname{arccsc}(\sec x)\bigr) = \frac{-\sec x\tan x}{|\sec x|\sqrt{\sec^2 x-1}} = \frac{-\sec x\tan x}{|\sec x\tan x|}.$$ Next, $\sec x\tan x = \sin x\sec^2x$, and $\sec^2x$ is always positive. So we can cancel a factor $\sec^2x$ from the top and bottom of that last displayed fraction, to get $$\frac d{dx}\bigl(\operatorname{arccsc}(\sec x)\bigr) = \frac{-\sin x}{|\sin x|} = \begin{cases}-1 & \text{if }\sin x>0,\\ +1 & \text{if }\sin x<0.\end{cases}$$
Thank you!
Now it is clear.:D
 
Re: find the derivative

Hello, veronica1999!

There is a reason for the constant answer.

Differentiate: .y \:=\:\csc^{-1}(\sec x)
Assume angle x is acute.

x is an angle in a right triangle.
Let z be the other acute angle.

Code:
                        *
                     * z*
             c    *     *
               *        * a
            *           *
         * x            *
      *  *  *  *  *  *  *
               b
We have: .\sec x \,=\,\tfrac{c}{b}

Then we want: .\csc^{-1}\left(\tfrac{c}{b}\right)

The angle whose cosecant is \tfrac{c}{b} is angle z.

Hence: .y \:=\:\csc^{-1}(\sec x) \:=\:z

. . . . . . y \:=\:\tfrac{\pi}{2} - x

Therefore: .y&#039; \;=\;-1
 
  • #10
[math]\displaystyle \begin{align*} y &= \csc^{-1} { \left[ \sec{(x)} \right] } \\ \csc{(y)} &= \sec{(x)} \\ \frac{1}{\sin{(y)}} &= \frac{1}{\cos{(x)}} \\ \cos{(x)} &= \sin{(y)} \\ \frac{d}{dx} \left[ \cos{(x)} \right] &= \frac{d}{dx} \left[ \sin{(y)} \right] \\ -\sin{(x)} &= \cos{(y)}\,\frac{dy}{dx} \\ -\frac{\sin{(x)}}{\cos{(y)}} &= \frac{dy}{dx} \\ -\frac{\sin{(x)}}{ \sqrt{ 1 - \frac{1}{\csc^2{(y)}} } } &= \frac{dy}{dx} \\ -\frac{\sin{(x)}}{ \sqrt{ 1 - \frac{1}{ \left( \csc{ \left\{ \csc^{-1}{ \left[ \sec{(x)} \right] } \right\} } \right) ^2 } } } &= \frac{dy}{dx} \\ -\frac{\sin{(x)}}{\sqrt{ 1 - \frac{1}{\sec^2{(x)}} }} &= \frac{dy}{dx} \\ -\frac{\sin{(x)}}{\sqrt{1 - \cos^2{(x)}}} &= \frac{dy}{dx} \\ -\frac{\sin{(x)}}{\sin{(x)}} &= \frac{dy}{dx} \\ \frac{dy}{dx} &= -1 \end{align*}[/math]
 
  • #11
Prove It said:
[math]\displaystyle \begin{align*} y &= \csc^{-1} { \left[ \sec{(x)} \right] } \\ \csc{(y)} &= \sec{(x)} \\ \frac{1}{\sin{(y)}} &= \frac{1}{\cos{(x)}} \\ \cos{(x)} &= \sin{(y)} \\ \frac{d}{dx} \left[ \cos{(x)} \right] &= \frac{d}{dx} \left[ \sin{(y)} \right] \\ -\sin{(x)} &= \cos{(y)}\,\frac{dy}{dx} \\ -\frac{\sin{(x)}}{\cos{(y)}} &= \frac{dy}{dx} \\ -\frac{\sin{(x)}}{ \sqrt{ 1 - \frac{1}{\csc^2{(y)}} } } &= \frac{dy}{dx} \\ -\frac{\sin{(x)}}{ \sqrt{ 1 - \frac{1}{ \left( \csc{ \left\{ \csc^{-1}{ \left[ \sec{(x)} \right] } \right\} } \right) ^2 } } } &= \frac{dy}{dx} \\ -\frac{\sin{(x)}}{\sqrt{ 1 - \frac{1}{\sec^2{(x)}} }} &= \frac{dy}{dx} \\ -\frac{\sin{(x)}}{\sqrt{1 - \cos^2{(x)}}} &= \frac{dy}{dx} \\ -\frac{\sin{(x)}}{\sin{(x)}} &= \frac{dy}{dx}\quad \color{red}{\text{The denominator here should be }|\sin x|} \\ \frac{dy}{dx} &= -1\quad \color{red}{\text{ if }\sin x>0, \text{ but +1 if }\sin x<0.}\end{align*}[/math]
...
 

Similar threads

Replies
13
Views
3K
  • · Replies 5 ·
Replies
5
Views
620
  • · Replies 49 ·
2
Replies
49
Views
6K
Replies
32
Views
5K
  • · Replies 21 ·
Replies
21
Views
4K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 9 ·
Replies
9
Views
8K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K