MHB Calculate the density - Unbiased estimator for θ

  • Thread starter Thread starter mathmari
  • Start date Start date
  • Tags Tags
    Density
Click For Summary
The discussion focuses on calculating the density and unbiased estimators for the parameter θ in a statistical product model. Participants explore the density function of the maximum of a set of random variables and confirm the relationship between the maximum and individual variables. They discuss the requirement for the estimator $\tilde{T}$ to be unbiased, emphasizing the need to find a constant c that satisfies the condition E(tilde{T}) = θ. Additionally, they highlight the method for calculating expected values using probability densities. The conversation aims to clarify these statistical concepts and calculations.
mathmari
Gold Member
MHB
Messages
4,984
Reaction score
7
Hey! :giggle:

For $n \in \mathbb{N}$ we consider the statistical product model $(X ,(P_{\theta})_{\theta\in\Theta})$ with $X = (0,\infty)^n$, $\Theta = (0,\infty)$ and densities $f_{\theta}(x_i) = \frac{1}{\theta} \textbf{1}_{(0,\theta)}(x_i)$ for all $x_i \in (0,\infty)$, $\theta \in \Theta$. It will be the three estimators $T$, $\tilde{T}$ , $\hat{T}$ : $X \rightarrow \mathbb{R}$, $$T(x)=\frac{2}{n}\sum_{i=1}^nx_i, \ \ \ \tilde{T}(x)=c\cdot \max (x_1,\ldots ,x_n), \ \ \ \hat{T}(x)=2x_1$$ proposed for $\theta$, where $c \in (0,\infty)$ is a constant.

(a) Show that $f : \mathbb{R} \rightarrow [0,\infty)$, $f(y) = \frac{n}{\theta^n} y^{n-1}\textbf{1}_{(0,\theta)}(y)$, is the density of $\max(X_1, \ldots , X_n)$ by first calculating the distribution function $F(y) = P_{\theta}[\max(X_1,\ldots , X_n) \leq y]$ and then deriving it.

(b) For which $c \in (0,\infty)$ is $\tilde{T}$ unbiased for $\theta$ ?

(c) Calculate for $T$, $\tilde{T}$ and $\hat{T}$ each the mean square deviation at $\theta$.
At (a) we have :

We have that $\max(X_1,\ldots , X_n) \leq y$ if $X_i\leq y$ for all $1\leq i\leq n$, right?
Therefore we get $F(y) = P_{\theta}[\max(X_1,\ldots , X_n) \leq y]=\left (P_{\theta}[X_1\leq y]\right )^n$.
Do we know that probability? How could we continue? :unsure: At (b) do we check if $E(T)=\theta$ , $E(\tilde{T})=\theta$ and $E(\hat{T})=\theta$ ? Or what are we supposed to check ? :unsure:
 
Physics news on Phys.org
Hi mathmari,

Good work so far. Here are a few ideas to keep things moving.

(a) You're correct that $\max(X_1,\ldots , X_n) \leq y$ iff $X_i\leq y$ for all $1\leq i\leq n$. It is also true in this case that $F(y) = \left (P_{\theta}[X_1\leq y]\right )^n$, but this does not follow just because $\max(X_1,\ldots , X_n) \leq y$ iff $X_i\leq y$ for all $1\leq i\leq n$. The reason this is true is because each of the variables $X_{i}$ is distributed identically/the same way (in this case uniformly on the interval $(0,\theta)$) according to the probability distributions/densities $f_{\theta}(x_{i})$. If this were not the case, you could not conclude $F(y)=\left (P_{\theta}[X_1\leq y]\right )^n$.

In general (i.e., this applies broadly and not just to this problem), to obtain a probability from a density, we integrate the density over an appropriate interval. For example, if we wanted to know the probability that $0.25\leq X_{i}\leq 0.75$, we would calculate $$\int_{0.25}^{0.75}f_{\theta}(x_{i})dx_{i}.$$
Try using this information to determine what $P_{\theta}[X_1\leq y]$ is. The cumulative probability is then $F(y) = \left (P_{\theta}[X_1\leq y]\right )^n.$ By definition of probability densities (see Wikipedia - Probability Density), the probability density of $\max(X_1,\ldots , X_n) $ is the derivative of $F(y)$ with respect to $y$.

(b) You need to determine the value of $c$ so that $\theta = E(\tilde{T})$. In general, if a random variable $X$ has a probability density function $f(x)$, then the expected value of $X$ is $$E[X] = \int_{-\infty}^{\infty}x\cdot f(x)dx$$
You will want to use your answer from part (a) to calculate $E(\tilde{T})$.

Feel free to let me know if you have any other questions.
 
Last edited:
Hello, I'm joining this forum to ask two questions which have nagged me for some time. They both are presumed obvious, yet don't make sense to me. Nobody will explain their positions, which is...uh...aka science. I also have a thread for the other question. But this one involves probability, known as the Monty Hall Problem. Please see any number of YouTube videos on this for an explanation, I'll leave it to them to explain it. I question the predicate of all those who answer this...