MHB Calculate Volume of Truncated Square Pyramid | Yahoo Answers

AI Thread Summary
The discussion focuses on calculating the volume of a truncated square pyramid using integral calculus. The method involves slicing the pyramid into horizontal square slices and integrating to find the total volume. The volume of each slice is expressed as a function of the slice's dimensions and the angle of repose. By applying the Fundamental Theorem of Calculus, the final volume formula is derived. Using the provided dimensions, the calculated volume is approximately 47855.22 cm³.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Truncated Pyramid Question?

If the angle of repose is given as 32 degrees, the height is 18cm and the top square is 20*20cm, can I calculate the volume?

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Sam G,

One method we can use to calculate the volume of the pyramid is to use a technique from integral calculus called volumes by slicing. We will slice the pyramid into horizontal square slices and then add the slices by integrating.

I would choose to orient the cross-section of the pyramid as follows:

View attachment 1132

We can now see that the volume of an arbitrary slice, a square slice of side length $s$ and thickness $dy$ is:

$$dV=s^2\,dy$$

where:

$$s=w+2x=w+2\cot(\theta)y$$

and so we have:

$$dV=\left(w+2\cot(\theta)y \right)^2\,dy= \left(w^2+4w\cot(\theta)y+4\cot^2(\theta)y^2 \right)\,dy$$

Now, summing the slices by integration, we find:

$$V=\int_0^h w^2+4w\cot(\theta)y+4\cot^2(\theta)y^2\,dy$$

Applying the FTOC, we obtain:

$$V=\left[w^2y+2w\cot(\theta)y^2+\frac{4}{3}\cot^2(\theta)y^3 \right]_0^h=w^2h+2w\cot(\theta)h^2+\frac{4}{3}\cot^2( \theta)h^3$$

$$V=\frac{h}{3}\left(4\cot^2( \theta)h^2+6w\cot(\theta)h+3w^2 \right)$$

Using the given data:

$$h=18\text{ cm},\,w=20\text{ cm},\,\theta=32^{\circ}$$

we find:

$$V\approx47855.220519615943\text{ cm}^3$$
 

Attachments

  • samg.jpg
    samg.jpg
    4.4 KB · Views: 111
Thread 'Video on imaginary numbers and some queries'
Hi, I was watching the following video. I found some points confusing. Could you please help me to understand the gaps? Thanks, in advance! Question 1: Around 4:22, the video says the following. So for those mathematicians, negative numbers didn't exist. You could subtract, that is find the difference between two positive quantities, but you couldn't have a negative answer or negative coefficients. Mathematicians were so averse to negative numbers that there was no single quadratic...
Thread 'Unit Circle Double Angle Derivations'
Here I made a terrible mistake of assuming this to be an equilateral triangle and set 2sinx=1 => x=pi/6. Although this did derive the double angle formulas it also led into a terrible mess trying to find all the combinations of sides. I must have been tired and just assumed 6x=180 and 2sinx=1. By that time, I was so mindset that I nearly scolded a person for even saying 90-x. I wonder if this is a case of biased observation that seeks to dis credit me like Jesus of Nazareth since in reality...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Back
Top