MHB Calculate Volume of Truncated Square Pyramid | Yahoo Answers

AI Thread Summary
The discussion focuses on calculating the volume of a truncated square pyramid using integral calculus. The method involves slicing the pyramid into horizontal square slices and integrating to find the total volume. The volume of each slice is expressed as a function of the slice's dimensions and the angle of repose. By applying the Fundamental Theorem of Calculus, the final volume formula is derived. Using the provided dimensions, the calculated volume is approximately 47855.22 cm³.
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here is the question:

Truncated Pyramid Question?

If the angle of repose is given as 32 degrees, the height is 18cm and the top square is 20*20cm, can I calculate the volume?

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Sam G,

One method we can use to calculate the volume of the pyramid is to use a technique from integral calculus called volumes by slicing. We will slice the pyramid into horizontal square slices and then add the slices by integrating.

I would choose to orient the cross-section of the pyramid as follows:

View attachment 1132

We can now see that the volume of an arbitrary slice, a square slice of side length $s$ and thickness $dy$ is:

$$dV=s^2\,dy$$

where:

$$s=w+2x=w+2\cot(\theta)y$$

and so we have:

$$dV=\left(w+2\cot(\theta)y \right)^2\,dy= \left(w^2+4w\cot(\theta)y+4\cot^2(\theta)y^2 \right)\,dy$$

Now, summing the slices by integration, we find:

$$V=\int_0^h w^2+4w\cot(\theta)y+4\cot^2(\theta)y^2\,dy$$

Applying the FTOC, we obtain:

$$V=\left[w^2y+2w\cot(\theta)y^2+\frac{4}{3}\cot^2(\theta)y^3 \right]_0^h=w^2h+2w\cot(\theta)h^2+\frac{4}{3}\cot^2( \theta)h^3$$

$$V=\frac{h}{3}\left(4\cot^2( \theta)h^2+6w\cot(\theta)h+3w^2 \right)$$

Using the given data:

$$h=18\text{ cm},\,w=20\text{ cm},\,\theta=32^{\circ}$$

we find:

$$V\approx47855.220519615943\text{ cm}^3$$
 

Attachments

  • samg.jpg
    samg.jpg
    4.4 KB · Views: 107
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top