MHB Calculating MGF: Solutions for Undefined Limit Issue

  • Thread starter Thread starter Usagi
  • Start date Start date
Click For Summary
The discussion centers on calculating the moment generating function (MGF) and addressing an undefined limit issue. The MGF is defined as M(t) = E(e^{tX}) = ∫₀^∞ e^{xt} e^{-x} dx, which converges for t < 1, yielding M(t) = 1/(1-t). Participants clarify that the condition t < 1 is crucial for convergence, while the series expansion M(t) = ∑ₙ₌₀^∞ tⁿ also converges for -1 < t < 1. The conversation emphasizes the importance of these conditions for computing moments effectively.
Usagi
Messages
38
Reaction score
0
http://img253.imageshack.us/img253/7306/moments.jpg

This a pretty weird question... because:

E(e^{tX}) = M(t) = \int_0^{\infty} e^{xt} e^{-x} dx = \int_0^{\infty} e^{-x(1-t)}dx = \lim_{k \to \infty} \left[\frac{e^{x(t-1)}}{t-1}\right]_0^k

But the limit: \lim_{k \to \infty} \left[\frac{e^{k(t-1)}}{t-1}\right] is undefined?

How am I meant to compute the MGF then?

Thanks
 
Physics news on Phys.org
Usagi said:
http://img253.imageshack.us/img253/7306/moments.jpg

This a pretty weird question... because:

E(e^{tX}) = M(t) = \int_0^{\infty} e^{xt} e^{-x} dx = \int_0^{\infty} e^{-x(1-t)}dx = \lim_{k \to \infty} \left[\frac{e^{x(t-1)}}{t-1}\right]_0^k

But the limit: \lim_{k \to \infty} \left[\frac{e^{k(t-1)}}{t-1}\right] is undefined?

How am I meant to compute the MGF then?

Thanks

If $\displaystyle 1-t>0 \implies t<1$ is...

$\displaystyle E\{e^ {t\ X}\}= \int_{0}^{\infty} e^{-x\ (1-t)}\ dx = - |\frac{e^{-x\ (1-t)}}{1-t}|_{0}^{\infty} = \frac{1}{1-t}$ (1)

The condition $t<1$ is no limitation because pratically we are interested to the function $M(t)$ and its derivatives in $t=0$...

Kind regards

$\chi$ $\sigma$
 
Last edited:
Thanks chisigma,

However how did you know to set t-1>0? I thought the restriction on t was that there exists a positive b, such that t \in (-b,b)

How does that relate with setting t-1>0 though?

Thanks again
 
Usagi said:
Thanks chisigma,

However how did you know to set t-1>0? I thought the restriction on t was that there exists a positive b, such that t \in (-b,b)

How does that relate with setting t-1>0 though?

Thanks again

The integral defining the moment generating function...

$\displaystyle M(t)= E\{e^{t\ X}\}= \int_{0}^{\infty} e^{-x\ (1-t)}\ dx$ (1)

... converges for $\displaystyle t<1$ to $\displaystyle M(t)= \frac{1}{1-t}$. The series expansion...

$\displaystyle M(t)= \frac{1}{1-t}= \sum_{n=0}^{\infty} t^{n}$ (2)

... converges for $\displaystyle -1<t<1$ and (2) allows You an easily computation of the moments...

$\displaystyle E\{X^{n}\}= M^{(n)}(0)= n!$ (3)

Kind regards

$\chi$ $\sigma$
 
There is a nice little variation of the problem. The host says, after you have chosen the door, that you can change your guess, but to sweeten the deal, he says you can choose the two other doors, if you wish. This proposition is a no brainer, however before you are quick enough to accept it, the host opens one of the two doors and it is empty. In this version you really want to change your pick, but at the same time ask yourself is the host impartial and does that change anything. The host...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 36 ·
2
Replies
36
Views
4K
  • · Replies 25 ·
Replies
25
Views
3K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
7
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
9
Views
3K
  • · Replies 0 ·
Replies
0
Views
2K
Replies
2
Views
1K