MHB Calculating Null Clines: Tips & Tricks

  • Thread starter Thread starter mt91
  • Start date Start date
  • Tags Tags
    Tips
Click For Summary
To calculate null clines for the given equations, set them to zero. The first equation simplifies to \( a + u - au - u^2 - v = 0 \), while the second equation factors to \( v(bu - c) = 0 \), yielding \( v = 0 \) and \( bu = c \). The discussion confirms that the null clines for \( u \) are derived from the first equation, while the null clines for \( v \) are found by solving the second equation. Participants express uncertainty about the next steps after these calculations. Overall, the thread provides insights into the methods for determining null clines in a system of equations.
mt91
Messages
13
Reaction score
0
1596386221646.png

I need to calculate the null clines of these two equations.

I know that in order to find the null cline you set the equations to 0.

I tried to calculate the du/dt equation and got up to
\[ a+u-au-u^2 -v=0 \]
Not entirely sure where I'm supposed to go from there.

For the dv/dt equation I factorised out v to get:
\[ v(bu-c)=0 \]

giving me v=0 and bu-c = 0.

I'm not entirely sure if I'm going about this the correct way so any help would be appreciated, cheers
 
Physics news on Phys.org
$u(1-u)(a+u) - uv = 0$

$u[(1-u)(a+u) - v] = 0$

$-u[u^2+(a-1)u - (a - v)] = 0$

$u = 0$, $u = \dfrac{(1-a) \pm \sqrt{(a-1)^2 + 4(a-v)}}{2}$

I'll leave what happens from here to you.
 
skeeter said:
$u(1-u)(a+u) - uv = 0$

$u[(1-u)(a+u) - v] = 0$

$-u[u^2+(a-1)u - (a - v)] = 0$

$u = 0$, $u = \dfrac{(1-a) \pm \sqrt{(a-1)^2 + 4(a-v)}}{2}$

I'll leave what happens from here to you.

Nice, so that's the u null clines?

are the v null clines then when:

\[ dv/dt =buv-cv \]
\[ 0=buv-cv \]
\[ 0=v(bu-c) \]
\[ v=0, bu=c \]
 

Similar threads

Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
3K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 5 ·
Replies
5
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
Replies
9
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K