MHB Calculating The Nth Rational Number

  • Thread starter Thread starter moyo
  • Start date Start date
  • Tags Tags
    Rational
moyo
Messages
27
Reaction score
0
Hallo

If we specify a particular method for mapping the natural numbers to the rationals, could we also specify a "distance" between two consecutive terms in some general way. Also are we able to calculate the nth term in such a progression perhaps incorporating this distance function somehow within its expression.
 
Mathematics news on Phys.org
Your question is not very clear. What are you referring to when you say "two consecutive terms", "nth term" and "progression"?
 
moyo said:
Hallo

If we specify a particular method for mapping the natural numbers to the rationals, could we also specify a "distance" between two consecutive terms in some general way. Also are we able to calculate the nth term in such a progression perhaps incorporating this distance function somehow within its expression.

If "we specify a particular method for mapping the natural numbers to the rationals" is the key. If we have some function \{a_n\} such that to every natural number n, we have a rational number a_n and every rational number is on that list, then, for any n we could determine a_{n+1}- a_n. Whether there would be any reasonable formula for that function of n depends on the mapping. And asking whether "we able to calculate the nth term in such a progression" is asking whether there exist a reasonable function describing that progression.

Since the rational numbers are countable, such progressions exist but whether or not there exist reasonable formulas for calculating them depends on the progression.
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top