MHB Calculating The Nth Rational Number

  • Thread starter Thread starter moyo
  • Start date Start date
  • Tags Tags
    Rational
Click For Summary
The discussion centers on mapping natural numbers to rational numbers and the possibility of defining a "distance" between consecutive terms in this mapping. It explores whether a reasonable formula can be established to calculate the nth term of such a progression, emphasizing that the existence of such formulas depends on the specific mapping used. The participants note that since rational numbers are countable, progressions can exist, but their calculability hinges on the chosen method. A reference to an algorithm for calculating the nth term in the Calkin-Wilf sequence is also provided. Overall, the feasibility of defining a systematic approach to these calculations is the main focus.
moyo
Messages
27
Reaction score
0
Hallo

If we specify a particular method for mapping the natural numbers to the rationals, could we also specify a "distance" between two consecutive terms in some general way. Also are we able to calculate the nth term in such a progression perhaps incorporating this distance function somehow within its expression.
 
Mathematics news on Phys.org
Your question is not very clear. What are you referring to when you say "two consecutive terms", "nth term" and "progression"?
 
moyo said:
Hallo

If we specify a particular method for mapping the natural numbers to the rationals, could we also specify a "distance" between two consecutive terms in some general way. Also are we able to calculate the nth term in such a progression perhaps incorporating this distance function somehow within its expression.

If "we specify a particular method for mapping the natural numbers to the rationals" is the key. If we have some function \{a_n\} such that to every natural number n, we have a rational number a_n and every rational number is on that list, then, for any n we could determine a_{n+1}- a_n. Whether there would be any reasonable formula for that function of n depends on the mapping. And asking whether "we able to calculate the nth term in such a progression" is asking whether there exist a reasonable function describing that progression.

Since the rational numbers are countable, such progressions exist but whether or not there exist reasonable formulas for calculating them depends on the progression.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 12 ·
Replies
12
Views
3K
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 14 ·
Replies
14
Views
2K
  • · Replies 10 ·
Replies
10
Views
3K
  • · Replies 11 ·
Replies
11
Views
2K