MHB Cal's questions at Yahoo Answers regarding the derivative form of the FTOC

  • Thread starter Thread starter MarkFL
  • Start date Start date
  • Tags Tags
    Derivative Form
MarkFL
Gold Member
MHB
Messages
13,284
Reaction score
12
Here are the questions:

How to get the derivative of a definite integral?

F(x) = the integral from x to 4 of sin(t^4) dt

F'(x) = ?

----

f(x) = the integral from x to 12 of t^7 dt

f'(x) = ?

I have several more like these. I've been working on them for 6 hours. None of my answers are right. I don't understand what I'm doing wrong!

I have posted a link there to this topic so the OP can see my work.
 
Mathematics news on Phys.org
Hello Cal,

The derivative form of the Fundamental Theorem of Calculus states:

$$\frac{d}{dx}\int_a^{u(x)} f(t)\,dt=f\left(u(x) \right)\frac{du}{dx}$$

Another rule we will need is the following rule for definite integrals:

$$\int_a^b f(x)\,dx=-\int_b^a f(x)\,dx$$

This rule can easily be demonstrated using the anti-derivative form of the Fundamental Theorem of Calculus:

$$\int_a^b f(x)\,dx=F(b)-F(a)=-\left(F(a)-F(b) \right)=-\int_b^a f(x)\,dx$$

So, let's apply these rules to the given problems.

1.) $$F(x)=\int_x^4 \sin\left(t^4 \right)\,dt=-\int_4^x \sin\left(t^4 \right)\,dt$$

Hence:

$$F'(x)=-\frac{d}{dx}\int_4^x \sin\left(t^4 \right)\,dt=-\sin\left(x^4 \right)$$

2.) $$f(x)=\int_x^{12}t^7\,dt=-\int_{12}^x t^7\,dt$$

Hence:

$$f'(x)=-\frac{d}{dx}\int_{12}^x t^7\,dt=-x^7$$
 
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
I'm interested to know whether the equation $$1 = 2 - \frac{1}{2 - \frac{1}{2 - \cdots}}$$ is true or not. It can be shown easily that if the continued fraction converges, it cannot converge to anything else than 1. It seems that if the continued fraction converges, the convergence is very slow. The apparent slowness of the convergence makes it difficult to estimate the presence of true convergence numerically. At the moment I don't know whether this converges or not.
Back
Top