MHB Cambree's question at Yahoo Answers (Convergence of a sequence)

  • Thread starter Thread starter Fernando Revilla
  • Start date Start date
  • Tags Tags
    Sequence
AI Thread Summary
The sequence in question is determined to be convergent. The term 29/19^n is bounded below and decreasing, while 18arctan(n^5) is bounded above and increasing, both confirming convergence. The limit of the sequence as n approaches infinity is calculated to be 9π. Therefore, the final conclusion is that the sequence converges to 9π. Further inquiries can be directed to the specified math help forum.
Fernando Revilla
Gold Member
MHB
Messages
631
Reaction score
0
Here is the question:

Determine whether the sequence is divergent or convergent. If it is convergent, evaluate its limit. If it diverges to infinity, state your answer as "INF" (without the quotation marks). If it diverges to negative infinity, state your answer as "MINF". If it diverges without being infinity or negative infinity, state your answer as "DIV".

limit as n approaches infinity -> (29/19^(n))+ 18arctan(n^5)

Here is a link to the question:

Determine whether the sequence is divergent or convergent? - Yahoo! Answers

I have posted a link there to this topic so the OP can find my response.
 
Mathematics news on Phys.org
Hello Cambree,

Easily proved, $29/19^n$ is bounded below (by $0$) and decreasing, so it is convergent. The sequence $18\arctan n^5$ is bounded above (by $18\pi/2$) and increassing, so it is convergent. As a consequence, the given sequence is convergent. Besides, $$\lim_{n\to +\infty}\left(\frac{29}{19^n}+ 18\arctan n^5\right)=\frac{19}{+\infty}+18\arctan (+\infty)=0+18\frac{\pi}{2}=\boxed{9\pi} $$ If you have further questions, you can post them in the http://www.mathhelpboards.com/f21/ section.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top