Can a Polynomial Have More Roots Than Its Degree?

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2017
Click For Summary
SUMMARY

The discussion centers on the mathematical property of polynomials, specifically addressing the equation $P(x) = Q(x)P''(x)$, where $P(x)$ is a polynomial of degree $n$ and $Q(x)$ is a quadratic polynomial. It concludes that if $P(x)$ has at least two distinct roots, then it necessarily has $n$ distinct roots. This problem was featured in the 1999 William Lowell Putnam Mathematical Competition and remains unsolved in the current forum, with a notable mention of Kiwi for participation.

PREREQUISITES
  • Understanding of polynomial functions and their properties
  • Knowledge of calculus, specifically derivatives and the concept of the second derivative
  • Familiarity with the Fundamental Theorem of Algebra
  • Basic concepts of quadratic polynomials
NEXT STEPS
  • Study the Fundamental Theorem of Algebra and its implications for polynomial roots
  • Explore the properties of polynomial derivatives, focusing on second derivatives
  • Investigate the role of quadratic polynomials in polynomial equations
  • Review solutions to past William Lowell Putnam Mathematical Competitions for advanced problem-solving techniques
USEFUL FOR

Mathematics students, educators, and enthusiasts interested in polynomial theory, calculus, and competitive mathematics problem-solving.

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Here is this week's POTW:

-----

Let $P(x)$ be a polynomial of degree $n$ such that $P(x)=Q(x)P''(x)$, where $Q(x)$ is a quadratic polynomial and $P''(x)$ is the second derivative of $P(x)$. Show that if $P(x)$ has at least two distinct roots then it must have $n$ distinct roots.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Re: Problem Of The Week # 255 - Mar 11, 2017

This was Problem B-2 in the 1999 William Lowell Putnam Mathematical Competition.

No one solved this week's POTW, though there is an honorable mention to Kiwi. The solution, attributed to Kiran Kedlaya and his associates, follows:

Suppose that $P$ does not have $n$ distinct roots; then it has a root of multiplicity at least $2$, which we may assume is $x=0$ without loss of generality. Let $x^k$ be the greatest power of $x$ dividing $P(x)$, so that $P(x) = x^k R(x)$ with $R(0) \neq 0$; a simple computation yields
\[
P''(x) = (k^2-k)x^{k-2} R(x) + 2kx^{k-1} R'(x) + x^k R''(x).
\]
Since $R(0) \neq 0$ and $k\geq 2$, we conclude that the greatest power of $x$ dividing $P''(x)$ is $x^{k-2}$. But $P(x) = Q(x) P''(x)$, and so $x^2$ divides $Q(x)$. We deduce (since $Q$ is quadratic) that $Q(x)$ is a constant $C$ times $x^2$; in fact, $C=1/(n(n-1))$ by inspection of the leading-degree terms of $P(x)$ and $P''(x)$.

Now if $P(x) = \sum_{j=0}^n a_j x^j$, then the relation $P(x) = Cx^2 P''(x)$ implies that $a_j = Cj(j-1)a_j$ for all $j$;
hence $a_j = 0$ for $j \leq n-1$, and we conclude that $P(x) = a_n x^n$, which has all identical roots.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
2
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K