- #1

Ackbach

Gold Member

MHB

- 4,155

- 91

-----

If $a_0\ge a_1 \ge a_2\ge \cdots\ge a_n\ge 0,$ prove that any root $r$ of the polynomial

$$P(z)\equiv a_0 z^n+a_1 z^{n-1}+\cdots+a_n$$

satisfies $|r|\le 1$; i.e., all the roots lie inside or on the unit circle centered at the origin in the complex plane.

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!