Undergrad Can a quantum state be thought of simply as one allowing bidirectional time travel?

Click For Summary
The discussion centers on the grandfather paradox and its implications for time travel, suggesting that if one were to kill their grandfather, it creates a contradiction regarding their own existence. This paradox leads to the idea of an infinite regress where both the individual and their grandfather exist and do not exist simultaneously. The conversation also touches on entropy, noting that while it typically increases, a simple quantum system could theoretically allow for low entropy states to recur. However, the complexity of larger systems makes such outcomes increasingly improbable. Ultimately, the thread concludes that the initial premise reflects a misunderstanding of quantum mechanics, leading to its closure.
OwlHoot
Messages
9
Reaction score
1
TL;DR
Quantum indeterminacy seems to share features in common with the well known contradictions of backward time travel, so could a quantum state simply be one which allows bidirectional time travel?
In relation to travel back in time, we've all heard of the grandfather paradox, whereby killing your grandfather before they sired offspring would preclude your future existence. This contradiction leads to the conclusion that time travel to the past must be impossible.

But it doesn't quite end there, because if, having killed him, you no longer exist in your "later time" then you can't go back in time and kill anyone. So, barring any other influences, one has an apparently infinite regress where you and your grandfather both exist and not exist at the same time. Sound familiar?

So could a quantum state be defined simply as one where travel back in time, as well as forward, is allowed within a system of limited complexity?

There's also the entropy aspect, in that entropy is always increasing, with near certainty. But if a quantum system is simple enough in its relevant aspects, then that need not hold. For example, if one's "system" was the sequence of results of casting two dice, and we agree that pairs of equal results are the low entropy states, then these can crop up over and over again indefinitely. But now add a hundred more dice to the system, and sets of all equal results of a collective throw become vanishingly unlikely. (I'm assuming implicitly that the "state" as actually some kind of continuous and rapid process of the system.)
 
Physics news on Phys.org
Thread closed for Moderation...
 
OwlHoot said:
So, barring any other influences, one has an apparently infinite regress where you and your grandfather both exist and not exist at the same time. Sound familiar?
You are seeing a similarity with Schrodinger's cat that is dead and not dead at the same time, the virtual particles that pop in and out of existence, the particles that can be in two places at once?
All of those are urban legends fueled by sloppy pop-sci writers and have nothing to do with how quantum mechanics actually works or what it allows. So there's no escape from the grandfather paradox here.
There's also the entropy aspect, in that entropy is always increasing, with near certainty. But if a quantum system is simple enough in its relevant aspects, then that need not hold. For example, if one's "system" was the sequence of results of casting two dice, and we agree that pairs of equal results are the low entropy states, then these can crop up over and over again indefinitely. But now add a hundred more dice to the system, and sets of all equal results of a collective throw become vanishingly unlikely. (I'm assuming implicitly that the "state" as actually some kind of continuous and rapid process of the system.)
Sure, but that's just classical statistical mechanics, no quantum physics involved.

As this thread is based on a misunderstanding it will remain closed.
 
  • Like
Likes Doc Al and berkeman
I am slowly going through the book 'What Is a Quantum Field Theory?' by Michel Talagrand. I came across the following quote: One does not" prove” the basic principles of Quantum Mechanics. The ultimate test for a model is the agreement of its predictions with experiments. Although it may seem trite, it does fit in with my modelling view of QM. The more I think about it, the more I believe it could be saying something quite profound. For example, precisely what is the justification of...

Similar threads

  • · Replies 25 ·
Replies
25
Views
5K
  • · Replies 140 ·
5
Replies
140
Views
12K
  • · Replies 15 ·
Replies
15
Views
3K
  • · Replies 8 ·
Replies
8
Views
3K
  • · Replies 16 ·
Replies
16
Views
3K
  • · Replies 51 ·
2
Replies
51
Views
5K
  • · Replies 9 ·
Replies
9
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 18 ·
Replies
18
Views
2K