MHB Can compact Hausdorff sets be expanded by open sets?

  • Thread starter Thread starter Euge
  • Start date Start date
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Suppose $X$ is compact Hausdorff. If $S$ is a subset of $X$ and $O$ is an open set in $X$ with $\overline{S} \subset O$, prove that there is another open set $V$ in $X$ with $\overline{S} \subset V \subset \overline{V} \subset O$.

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
This week's problem was solved by Opalg and Olinguito. You can read Olinguito's solution below.
We need two results about compact Hausdorff spaces. First, every closed subset of a compact space is compact.

Let $C$ be a closed subset of the compact space $X$ and let ${\frak U}=\{U_\lambda:\lambda\in\Lambda\}$ be an open cover of $C$. Then ${\frak U}\cup\{C^c\}$ (where $C^c=X\setminus C$) is an open cover of $X$. As $X$ is compact, there is a finite subcover $\{U_1,\ldots,U_n,C^c\}$. Then $\{U_1,\ldots,U_n\}$ is an open cover of $C$ and a finite subcover of $\frak U$, and so $C$ is compact.

The second result we need is that any two disjoint compact subsets of a Hausdorff space can be separated by disjoint open sets each containing one of the compact subsets.

Let $A,B$ be disjoint compact subsets of the Hausdorff space $X$. We want to show that there are open sets $U,W$ such that $U\cap W=\emptyset$ and $A\subseteq U$ and $B\subseteq W$. If $A$ and $B$ are both empty, we can take $U=W=\emptyset$; if $A$ is empty and $B$ non-empty, take $U=\emptyset$ and $W=X$; and if $A$ is non-empty and $B$ is empty, take $U=X$ and $W=\emptyset$. So assume that $A$ and $B$ are both non-empty.

Fix $a\in A$. Then, by Hausdorff, for each $b\in B$, there exist disjoint open sets $U_{a,b},W_{a,b}$ such that $a\in U_{a,b},b\in W_{a,b}$. The collection $\{W_{a,b}:b\in B\}$ is an open cover of $B$; by compactness of $B$, there is a finite subcover $\{W_{a,b_1},\ldots,W_{a,b_n}\}$. Set $\displaystyle W_a=\bigcup_{i=1}^nW_{a,b_i}$ and $\displaystyle U_a=\bigcap_{i=1}^nU_{a,b_i}$; thus $a\in U_a$, $B\subseteq W_a$, and $U_a,W_a$ are open and disjoint. Now, as we let $a$ range over $A$, the collection $\{U_a:a\in A\}$ is an open cover of $A$; by compactness of $A$, there is a finite subcover $\{U_{a_1},\ldots,U_{a_m}\}$. Set $\displaystyle U=\bigcup_{j=1}^mU_{a_j}$ and $\displaystyle W=\bigcap_{j=1}^mW_{a_j}$. Then $A\subseteq U,B\subseteq W$, both $U$ and $W$ are open and $U\cap W=\emptyset$ as required.

Now, to the problem itself. The subsets $\overline S$ and $O^c=X\setminus O$ are disjoint and closed, hence compact; thus there are disjoint open sets $V,Y$ such that $\overline S\subseteq V$ and $O^c\subseteq Y$, i.e. $Y^c=X\setminus Y\subseteq O$. As $V$ and $Y$ are disjoint, $V\subseteq Y^c$; also $Y^c$ is closed and so $\overline V\subseteq Y^c$ since $\overline V$ is the smallest closed subset of $X$ containing $V$. Thus we have
$$\overline S\ \subseteq\ V\subseteq\ \overline V\ \subseteq O$$
as required.
 
Back
Top