MHB Can Continuity Ensure Infinite Limits in Nested Functions?

  • Thread starter Thread starter Euge
  • Start date Start date
Click For Summary
The discussion centers on a problem of proving that if a continuous function f from R to R satisfies the condition that the limit of f(f(x)) approaches infinity as x approaches infinity, then the limit of the absolute value of f(x) must also approach infinity. Despite the challenge, no participants successfully solved the problem initially. The thread also acknowledges a previously overlooked solution by a user named Opalg. The focus remains on the implications of continuity in relation to nested functions and their limits. The conversation highlights the complexities involved in understanding limits in nested functions.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Prove that if $f:\mathbf{R} \to \mathbf{R}$ is continuous and $\lim\limits_{x\to \infty} f(f(x)) = \infty$, then $\lim\limits_{x\to \infty} |f(x)| = \infty$.
-----

 
Physics news on Phys.org
No one solved this problem. You can read my solution below.

If the conclusion is false, there is an $M > 0$ and a sequence $x_n \to \infty$ such that $|f(x_n)| \le M$ for all $n\in \mathbb{N}$. By the Bolzano - Weierstrass theorem, $\{f(x_n)\}$ has a convergent subsequence $\{f(x_{n_k})\}$. Suppose $f(x_{n_k}) \to L$. Continuity of $f$ implies $f(f(x_{n_k})) \to f(L)$. This contradicts the assumption $\lim\limits_{x\to \infty} f(f(x)) = \infty$.

Edit: Sorry, I've overlooked Opalg's solution, which you can read below!

Proof by contradiction (it involves knowing how to negate existential statements!).

Suppose that the result is false. Then there is a sequence $(x_n)$ such that $\lim\limits_{n\to\infty}x_n = \infty$ but $|f(x_n)|$ does not tend to infinity as $n\to\infty$. This means that there exists $R\in\mathbf{R}$ such that $|f(x_n)|\leqslant R$ infinitely often. So there is a subsequence $x_{n_k}$ (which satisfies $\lim\limits_{k\to\infty}x_{n_k} = \infty$) such that $|f(x_{n_k})| \leqslant R$ for all $k$.

The function $f$ is continuous, so it is bounded on closed bounded subsets of $\mathbf{R}$. Since the interval $[-R,R]$ is closed and bounded, it follows that there exists $M\in\mathbf{R}$ such that $f(x) \leqslant M$ whenever $|x|\leqslant R$.

Putting all that together, it follows that $f(f(x_{n_k})) \leqslant M$ for all $k$. But that contradicts the fact that $\lim\limits_{x\to\infty}f(f(x)) = \infty$.
 
Last edited:

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K