MHB Can k be equal to 4 in the equation k + 2 = 3^(n)?

  • Thread starter Thread starter mathdad
  • Start date Start date
AI Thread Summary
In the equation k + 2 = 3^(n), where n is a positive integer, k cannot equal 4 because it results in k + 2 equaling 6, which is not a power of 3. The discussion highlights that since 3 raised to any integer power is odd, k must also be odd to maintain the equation's integrity. Therefore, options like 1, 7, 25, and 79 are valid values for k, while 4 is not. The reasoning presented confirms that k = 4 is indeed an invalid solution. The conclusion emphasizes the importance of the parity of k in relation to the powers of 3.
mathdad
Messages
1,280
Reaction score
0
If n is a positive integer and k + 2 = 3^(n), which of the following could NOT be a value of k?

A. 1
B. 4
C. 7
D. 25
E. 79

I say the answer is B or 4.

When k = 4, k + 2 becomes 6.
However, there is no power we can raised 3 to that will yield 6.

Is my reasoning correct?
 
Mathematics news on Phys.org
RTCNTC said:
If n is a positive integer and k + 2 = 3^(n), which of the following could NOT be a value of k?

A. 1
B. 4
C. 7
D. 25
E. 79

I say the answer is B or 4.

When k = 4, k + 2 becomes 6.
However, there is no power we can raised 3 to that will yield 6.

Is my reasoning correct?
Looks good to me!

-Dan
 
Or since 3^(n) is odd, then k can't be 4.
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...
Back
Top