MHB Can k(x) be Generated with Only One Rational Fraction?

  • Thread starter Thread starter Math Amateur
  • Start date Start date
Click For Summary
The discussion centers on proving that the field k(x) of rational functions over a field k cannot be finitely generated as a k-algebra. The key argument is that any finite set of generators can only produce a finite number of irreducible factors in the denominators of the rational functions. Consequently, if k(x) were generated by a single rational fraction, it would lead to a finite number of irreducible polynomials, contradicting the infinite nature of irreducible polynomials in k(x). The conclusion is that it is impossible to generate k(x) with just one rational fraction or even a finite number of them. This establishes the non-finite generation of k(x) as a k-algebra.
Math Amateur
Gold Member
MHB
Messages
3,920
Reaction score
48
I would be grateful if someone could get me started on the following problem:

"Prove that the field k(x) of rational functions over k in the variable x is not a finitely generated k-algebra." (Dummit and Foote Chapter 15, page 668)

Peter

[This has also been posted on MHF]
 
Physics news on Phys.org
Hint: Any finite set of generators of $k(x)$ only produce a finite number of irreducible factors in the denominators.
 
Fernando Revilla said:
Hint: Any finite set of generators of $k(x)$ only produce a finite number of irreducible factors in the denominators.

Thanks Fernando.

My apologies ... I need a little more help ... Can you start me on the formal proof ..

I also need some help as to why irreducible elements enter the picture ...

Peter
 
This is the idea: suppose for example that $k(x)$ is generated by only one $p_1(x)/q_1(x)\in k(x).$ This means that $k(x)=k\left[p_1(x)/q_1(x)\right].$ But the elements of $k\left[p_1(x)/q_1(x)\right]$ have the form
$$a_n\left(\dfrac{p_1(x)}{q_1(x)}\right)^n+\ldots+a_1\dfrac{p_1(x)}{q_1(x)}+a_0=\dfrac{p(x)}{\left(q_1(x)\right)^n}\quad (a_i\in k,\;p(x)\in k[x])$$
The denominator has a finite number of irreducible factors. This means that we can't generate $k(x)$ with only one rational fraction (the number of irreducible plolynomials in $k(x)$ is infinite). Try to generalize to any finite number of generators.
 
Fernando Revilla said:
This is the idea: suppose for example that $k(x)$ is generated by only one $p_1(x)/q_1(x)\in k(x).$ This means that $k(x)=k\left[p_1(x)/q_1(x)\right].$ But the elements of $k\left[p_1(x)/q_1(x)\right]$ have the form
$$a_n\left(\dfrac{p_1(x)}{q_1(x)}\right)^n+\ldots+a_1\dfrac{p_1(x)}{q_1(x)}+a_0=\dfrac{p(x)}{\left(q_1(x)\right)^n}\quad (a_i\in k,\;p(x)\in k[x])$$
The denominator has a finite number of irreducible factors. This means that we can't generate $k(x)$ with only one rational fraction (the number of irreducible plolynomials in $k(x)$ is infinite). Try to generalize to any finite number of generators.

Thanks Fernando, I appreciate your help.

Peter
 
I am studying the mathematical formalism behind non-commutative geometry approach to quantum gravity. I was reading about Hopf algebras and their Drinfeld twist with a specific example of the Moyal-Weyl twist defined as F=exp(-iλ/2θ^(μν)∂_μ⊗∂_ν) where λ is a constant parametar and θ antisymmetric constant tensor. {∂_μ} is the basis of the tangent vector space over the underlying spacetime Now, from my understanding the enveloping algebra which appears in the definition of the Hopf algebra...

Similar threads

  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 3 ·
Replies
3
Views
4K
  • · Replies 3 ·
Replies
3
Views
2K
Replies
2
Views
2K
  • · Replies 8 ·
Replies
8
Views
2K
  • · Replies 3 ·
Replies
3
Views
3K
  • · Replies 7 ·
Replies
7
Views
4K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K