Can the Number of Zeroes of a Derivative Be Controlled?

  • Thread starter Thread starter Ackbach
  • Start date Start date
  • Tags Tags
    2017
Click For Summary
SUMMARY

The discussion centers on the mathematical properties of the function $\displaystyle f(t)=\sum_{j=1}^N a_j \sin(2\pi jt)$, specifically regarding the number of zeroes of its derivatives. It is established that the number of zeroes, denoted as $N_k$, satisfies the inequality $N_0 \leq N_1 \leq N_2 \leq \cdots$ and converges to $2N$ as $k$ approaches infinity. This result is significant in the context of the 2000 William Lowell Putnam Mathematical Competition and emphasizes the behavior of derivatives of trigonometric sums.

PREREQUISITES
  • Understanding of trigonometric functions and their properties
  • Familiarity with calculus, specifically differentiation
  • Knowledge of mathematical competition problems and techniques
  • Concept of zeroes of functions and their multiplicities
NEXT STEPS
  • Study the properties of trigonometric polynomials and their derivatives
  • Explore the concept of zeroes in the context of complex analysis
  • Learn about the implications of theorems related to the number of zeroes, such as Rolle's Theorem
  • Investigate the techniques used in mathematical competitions like the William Lowell Putnam
USEFUL FOR

Mathematicians, students preparing for mathematical competitions, and anyone interested in the analysis of trigonometric functions and their derivatives.

Ackbach
Gold Member
MHB
Messages
4,148
Reaction score
94
Here is this week's POTW:

-----

Let $\displaystyle f(t)=\sum_{j=1}^N a_j \sin(2\pi jt)$, where each $a_j$ is real and $a_N$ is not equal to 0. Let $N_k$ denote the number of zeroes (including multiplicities) of $\dfrac{d^k f}{dt^k}$. Prove that
\[N_0\leq N_1\leq N_2\leq \cdots \mbox{ and } \lim_{k\to\infty} N_k = 2N.\]
[Editorial clarification: only zeroes in $[0, 1)$ should be counted.]

-----

Remember to read the http://www.mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to http://www.mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
Re: Problem Of The Week # 267 - Jun 12, 2017

This was Problem B-3 in the 2000 William Lowell Putnam Mathematical Competition.

No one answered this week's POTW. The solution, attributed to Kiran Kedlaya and his associates, follows:

Let $f_k(t) = \frac{df^k}{dt^k}$. Recall Rolle's theorem: if $f(t)$ is differentiable, then between any two zeroes of $f(t)$ there exists a zero of $f'(t)$. This also applies when the zeroes are not all distinct: if $f$ has a zero of multiplicity $m$ at $t=x$, then $f'$ has a zero of multiplicity at least $m-1$ there.

Therefore, if $0 \leq a_0 \leq a_1 \leq \cdots \leq a_r < 1$ are the roots of $f_k$ in $[0,1)$, then $f_{k+1}$ has a root in each of the intervals $(a_0, a_1), (a_1, a_2), \dots, (a_{r-1}, a_r)$, so long as we adopt the convention that the empty interval $(t,t)$ actually contains the point $t$ itself. There is also a root in the "wraparound" interval $(a_r, a_0)$. Thus $N_{k+1} \geq N_k$.

Next, note that if we set $z = e^{2\pi i t}$; then
\[
f_{4k}(t) = \frac{1}{2i} \sum_{j=1}^N j^{4k} a_j (z^j - z^{-j})
\]
is equal to $z^{-N}$ times a polynomial of degree $2N$. Hence as a function of $z$, it has at most $2N$ roots; therefore $f_k(t)$ has at most $2N$ roots in $[0,1]$. That is, $N_k \leq 2N$ for all $N$.

To establish that $N_k \to 2N$, we make precise the observation that
\[
f_k(t) = \sum_{j=1}^N j^{4k} a_j \sin(2\pi j t)
\]
is dominated by the term with $j=N$. At the points $t = (2i+1)/(2N)$ for $i=0,1, \dots, N-1$, we have $N^{4k} a_N \sin (2\pi N t) = \pm N^{4k} a_N$. If $k$ is chosen large enough so that
\[
|a_N| N^{4k} > |a_1| 1^{4k} + \cdots + |a_{N-1}| (N-1)^{4k},
\]
then $f_k((2i+1)/2N)$ has the same sign as $a_N \sin (2\pi N at)$, which is to say, the sequence $f_k(1/2N), f_k(3/2N), \dots$ alternates in sign. Thus between these points (again including the "wraparound" interval) we find $2N$ sign changes of $f_k$. Therefore $\lim_{k \to \infty} N_k = 2N$.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
2K
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K