Can This Infinite Series Be Summed?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Infinity Sum
Click For Summary
SUMMARY

The forum discussion centers on evaluating the infinite series $\dfrac{1}{3^2+1}+\dfrac{1}{4^2+2}+\dfrac{1}{5^2+3}+\cdots$. Participants, including MarkFL and Pranav, share elegant methods for solving this problem, highlighting the collaborative nature of mathematical problem-solving. Random Variable is credited for contributing valuable insights to the discussion. The conversation emphasizes the importance of community in tackling complex mathematical series.

PREREQUISITES
  • Understanding of infinite series and convergence
  • Familiarity with calculus concepts, particularly limits
  • Basic knowledge of mathematical notation and summation
  • Experience with problem-solving in a collaborative environment
NEXT STEPS
  • Research techniques for evaluating infinite series
  • Study convergence tests for series in calculus
  • Explore advanced summation methods and their applications
  • Learn about collaborative problem-solving in mathematics forums
USEFUL FOR

Mathematicians, calculus students, educators, and anyone interested in advanced problem-solving techniques related to infinite series.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Evaluate $\dfrac{1}{3^2+1}+\dfrac{1}{4^2+2}+\dfrac{1}{5^2+3}+\cdots$
 
Physics news on Phys.org
My solution:

$$S=\sum_{k=1}^{\infty}\left(\frac{1}{(k+2)^2+k} \right)=\sum_{k=1}^{\infty}\left(\frac{1}{(k+1)(k+4)} \right)$$

Using partial fraction decomposition on the summand, we find:

$$S=\frac{1}{3}\sum_{k=1}^{\infty}\left(\frac{1}{k+1}-\frac{1}{k+4} \right)$$

We may write this as:

$$S=\frac{1}{3}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\sum_{k=1}\left(\frac{1}{k+4}-\frac{1}{k+4} \right) \right)$$

And so we have:

$$S=\frac{1}{3}\cdot\frac{13}{12}=\frac{13}{36}$$
 
MarkFL said:
My solution:

$$S=\sum_{k=1}^{\infty}\left(\frac{1}{(k+2)^2+k} \right)=\sum_{k=1}^{\infty}\left(\frac{1}{(k+1)(k+4)} \right)$$

Using partial fraction decomposition on the summand, we find:

$$S=\frac{1}{3}\sum_{k=1}^{\infty}\left(\frac{1}{k+1}-\frac{1}{k+4} \right)$$

We may write this as:

$$S=\frac{1}{3}\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\sum_{k=1}\left(\frac{1}{k+4}-\frac{1}{k+4} \right) \right)$$

And so we have:

$$S=\frac{1}{3}\cdot\frac{13}{12}=\frac{13}{36}$$

Hey MarkFL, your method is so elegant and neat!:cool: Well done, my sweet admin!
 
anemone said:
Evaluate $\dfrac{1}{3^2+1}+\dfrac{1}{4^2+2}+\dfrac{1}{5^2+3}+\cdots$

Notice that the given sum can be written as:
$$\sum_{r=1}^{\infty} \frac{1}{(r+2)^2+r}=\sum_{r=1}^{\infty} \frac{1}{r^2+5r+4}=\sum_{r=1}^{\infty} \frac{1}{(r+4)(r+1)}$$
$$=\frac{1}{3}\left(\sum_{r=1}^{\infty} \frac{1}{r+1}-\frac{1}{r+4}\right)$$
$$=\frac{1}{3}\left(\sum_{r=1}^{\infty}\int_0^1 x^r-x^{r+3}\,dx\right)=\frac{1}{3}\left( \sum_{r=1}^{\infty} \int_0^1 x^r(1-x^3)\,dx\right)$$
$$=\frac{1}{3}\int_0^1 (1-x^3)\frac{x}{1-x}\,dx = \frac{1}{3}\int_0^1 x(x^2+x+1)\,dx=\frac{1}{3}\int_0^1 x^3+x^2+x \,dx$$
Evaluating the definite integral gives:
$$\frac{1}{3}\cdot \frac{13}{12}=\frac{13}{36}$$
 
Pranav said:
Notice that the given sum can be written as:
$$\sum_{r=1}^{\infty} \frac{1}{(r+2)^2+r}=\sum_{r=1}^{\infty} \frac{1}{r^2+5r+4}=\sum_{r=1}^{\infty} \frac{1}{(r+4)(r+1)}$$
$$=\frac{1}{3}\left(\sum_{r=1}^{\infty} \frac{1}{r+1}-\frac{1}{r+4}\right)$$
$$=\frac{1}{3}\left(\sum_{r=1}^{\infty}\int_0^1 x^r-x^{r+3}\,dx\right)=\frac{1}{3}\left( \sum_{r=1}^{\infty} \int_0^1 x^r(1-x^3)\,dx\right)$$
$$=\frac{1}{3}\int_0^1 (1-x^3)\frac{x}{1-x}\,dx = \frac{1}{3}\int_0^1 x(x^2+x+1)\,dx=\frac{1}{3}\int_0^1 x^3+x^2+x \,dx$$
Evaluating the definite integral gives:
$$\frac{1}{3}\cdot \frac{13}{12}=\frac{13}{36}$$

Hmm...another good method to solve this problem, thanks Pranav for the solution and also for participating!:)
 
anemone said:
Hmm...another good method to solve this problem, thanks Pranav for the solution and also for participating!:)

You should thank Random Variable for this. :p

http://mathhelpboards.com/calculus-10/limit-sum-8576.html#post39742
 
Pranav said:
You should thank Random Variable for this. :p

http://mathhelpboards.com/calculus-10/limit-sum-8576.html#post39742

I will...but, does this mean you are kind of "cheating" here? Hehehe...just kidding!:p
 

Similar threads

  • · Replies 3 ·
Replies
3
Views
1K
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 5 ·
Replies
5
Views
2K
Replies
2
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
Replies
3
Views
2K