- 190

- 1

- Summary
- lemma in collatz conjecture proof.

Can this proposition be proved and become a lemma in the proof of Collatz conjecture?

$$collatz(n) \geq \lfloor \frac{log(n)}{log(2)} \rfloor.$$

$$collatz(n) \geq \lfloor \frac{log(n)}{log(2)} \rfloor.$$