Can Trigonometry and Geometry Prove that ab+pq is Not Prime?

  • Context: MHB 
  • Thread starter Thread starter anemone
  • Start date Start date
  • Tags Tags
    Prime
Click For Summary
SUMMARY

The discussion centers on proving that the expression \( ab + pq \) is not prime, given the integers \( a, b, p, q \) with the conditions \( a > b > p > q > 0 \). The proof utilizes the equation \( ap + bq = (b + q + a - p)(b + q - a + p) \) to demonstrate the non-primality of \( ab + pq \). Participants, including Albert, contributed insights on how trigonometric and geometric principles can effectively address this number theory problem.

PREREQUISITES
  • Understanding of integer properties and inequalities
  • Familiarity with number theory concepts
  • Basic knowledge of algebraic manipulation
  • Awareness of trigonometric and geometric applications in proofs
NEXT STEPS
  • Study the properties of prime numbers in number theory
  • Explore algebraic identities and their applications in proofs
  • Learn about the role of inequalities in mathematical proofs
  • Investigate the intersection of geometry and number theory
USEFUL FOR

Mathematicians, students of number theory, and anyone interested in the application of trigonometry and geometry in proving mathematical concepts.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Let $a,\,b,\,p,\,q$ be integers with $a>b>p>q>0$.

Suppose that $ap+bq=(b+q+a-p)(b+q-a+p)$.

Prove that $ab+pq$ is not prime.
 
Mathematics news on Phys.org
anemone said:
Let $a,\,b,\,p,\,q$ be integers with $a>b>p>q>0--(1)$.

Suppose that $ap+bq=(b+q+a-p)(b+q-a+p)---(2)$.

Prvoe that $ab+pq$ is not prime.
from (1)(2)we must have:
$p\geq q+1$
$b\geq q+2$
$a\geq q+3$
$ap+bq\geq (q+2+q+q+3-q-1)(q+2+q-q-3+q+1)=(2q+4)(2q)$
is not prime
$\therefore ab+pq\geq (q+2)(q+3)+(q+1)q=2q^2+6q+6$
is not prime
 
Thanks, Albert for participating and also the solution. :)

I want to share with MHB a solution that I thought is great to showcase how trigonometric and geometry skills could be used to tackle a number theory problem such as this one, and I hope you will like it as much as I do:
View attachment 3889

The equality $ap+bq=(b+q+a-p)(b+q-a+p)$ is equivalent to $a^2-ap+p^2=b^2+bq+q^2\tag{1}$.

Let $ABPQ$ be the quadrilateral with $AB=a,\,BP=q,\,PQ=b,\,AQ=p,\,\angle BAQ=60^{\circ}$ and $\angle BPQ=120^{\circ}$.

Such a quadrilateral exists in view of the equation we obtained in (1) and the Law of Cosines.

The common value in (1) is $BQ^2$. Let $\angle ABP=\theta$ so that $\angle PQA=180^{\circ}-\theta$.

Applying the Law of Cosines to triangles $ABP$ and $APQ$ gives

$a^2+q^2-2aq\cos \theta=b^2+p^2+2bp\cos \theta$

Hence $2\cos \theta=\dfrac{a^2+q^2-b^2-p^2}{aq+bp}$ and $AP^2=a^2+q^2-aq\left(\dfrac{a^2+q^2-b^2-p^2}{aq+bp}\right)=\dfrac{(ab+pq)(ap+bq)}{aq+bp}$.

Because $ABPQ$ is cyclic, Ptolemny's Theorem gives $(AP\cdot BQ)^2=(ab+pq)^2$.

It follows that

$\dfrac{(ab+pq)(ap+bq)}{aq+bp}\cdot (a^2-ap+p^2)=(ab+pq)^2$.

or simply $(ap+bq)(a^2-ap+p^2)=(ab+pq)(aq+bp)$.

Next, observe that
$ab+pq>ap+bq>aq+bp\tag{2}$.

The first inequality follows from $(a-q)(b-p)>0$, and the second from $(a-b)(p-q)>0$.

Now, assume that $ab+pq$ is prime, it then follows from (2) that $ab+pq$ and $ap+bq$ are relatively prime. Hence, from $(ap+bq)(a^2-ap+p^2)=(ab+pq)(aq+bp)$, it must be true that $ap+bq$ divides $aq+bp$.

However, this is impossible by (2). Thus $ab+pq$ must not be prime.

One example that satisfies the given conditions is $(65,\,50,\,34,\,11)$.
 

Attachments

  • Prove ab+bq isn't composite.JPG
    Prove ab+bq isn't composite.JPG
    13.3 KB · Views: 102

Similar threads

  • · Replies 13 ·
Replies
13
Views
3K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 9 ·
Replies
9
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 6 ·
Replies
6
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 10 ·
Replies
10
Views
3K
Replies
1
Views
2K
  • · Replies 10 ·
Replies
10
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K