MHB Can we prove this using the Binet's formula for the Fibonacci sequence?

  • Thread starter Thread starter Chris L T521
  • Start date Start date
Click For Summary
The discussion centers on proving the identity \( F_{n+1}^2 - F_n F_{n+2} = (-1)^n \) for the Fibonacci sequence defined by \( F_1=1, F_2=1, F_{n+2}=F_n+F_{n+1} \). Participants shared various solutions, with several members successfully demonstrating the proof. Caffeinemachine and Sudharaka provided distinct approaches, with Sudharaka opting for a method different from induction. The problem has generated interest and engagement among forum members, showcasing the collaborative effort in solving mathematical challenges. The thread highlights the community's enthusiasm for exploring Fibonacci properties through Binet's formula.
Chris L T521
Gold Member
MHB
Messages
913
Reaction score
0
Thanks to those who participated in last week's POTW! Here's this week's problem!

-----

Problem: One defines the Fibonacci sequence by $F_1=1,\,F_2=1,\,F_{n+2}=F_n+F_{n+1}$ for $n\geq 1$. Show that for all $n\in\mathbb{N}$, $F_{n+1}^2-F_nF_{n+2}=(-1)^n$.

-----

 
Physics news on Phys.org
This week's question was correctly answered by:

- caffeinemachine,
- Deveno,
- MarkFL,
- melese,
- Opalg, and
- Sudharaka

Here's caffeinemachine's solution:

Let $P(n)$ denote the statement $F_n^2-F_{n-1}F_{n+1}=(-1)^n$. When $P(n)$ is true we write $P(n)=1$. $P(1),P(2)=1$ can be verified by computation. We assume that $P(1),\ldots,P(n)=1$, where $n\geq 2$. Now we try to establish $P(n+1)=1$.
\begin{align*}
F_{n+1}^2-F_nF_{n+2}&=(F_{n}+F_{n-1})^2-F_nF_{n+2}\\
&=F_n^2+F_{n-1}^2+2F_nF_{n-1}-F_nF_{n+2}\\
&=F_n^2+F_{n-1}^2+2F_nF_{n-1}-F_n(F_{n+1}+F_{n})\\
&=F_n^2+F_{n-1}^2+2F_nF_{n-1}-F_nF_{n+1}-F_{n}^2\\
&=F_{n-1}^2+2F_nF_{n-1}-F_nF_{n+1}\\
&=(-1)^{n-1}+F_{n-2}F_n+2F_nF_{n-1}-F_nF_{n+1}\,\,\,\,(\text{by using P(n-1)=1})\\
&=(-1)^{n-1}+F_{n}(F_{n-2}+F_{n-1})+F_nF_{n-1}-F_nF_{n+1}\\
&=(-1)^{n_1}+F_n^2-F_n(F_{n+1}-F_{n-1})\\
&=(-1)^{n-1}+F_n^2-F_n(F_n)\\
&=(-1)^{n-1}\\
&=(-1)^{n+1}
\end{align*}

This establishes $P(n+1)=1$. By principle of mathematical induction the proof is complete.

Here's Sudharaka's solution (for something different than induction):

Let \(F_n=r^n\) as the trial solution and we get the characteristic equation,\[r^2-r-1=0\Rightarrow r=\frac{1\pm\sqrt{5}}{2}\]
Therefore the general solution is,
\[F_n=A\left(\frac{1+\sqrt{5}}{2}\right)^n+B\left( \frac{1-\sqrt{5}}{2}\right)^n~;~n\in\mathbb{Z}^+\]
where \(A\) and \(B\) are arbitrary constants. Since \(F_1=1\) and \(F_2=1\) we have,
\[A=\frac{1}{\sqrt{5}},B=-\frac{1}{\sqrt{5}}\]
\[\therefore F_n=\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n-\frac{1}{\sqrt{5}} \left( \frac{1-\sqrt{5}}{2}\right)^n~;~n\in\mathbb{Z}^+\]
Now consider \(F^{2}_{n+1}-F_n F_{n+2}\)
\begin{eqnarray}
F^{2}_{n+1}-F_n F_{n+2}&=&F^{2}_{n+1}-F_n(F_n+F_{n+1})\\
&=&\left(F_{n+1}-\left(\frac{1+\sqrt{5}}{2}\right)F_n\right)\left(F_{n+1}-\left(\frac{1-\sqrt{5}}{2}\right)F_n\right)
\end{eqnarray}
Substituting \(F_n=\frac{1}{\sqrt{5}} \left(\frac{1+\sqrt{5}}{2}\right)^n-\frac{1}{\sqrt{5}} \left( \frac{1-\sqrt{5}}{2}\right)^n\) we get,
\[\begin{aligned}&\phantom{=} F^{2}_{n+1}-F_n F_{n+2}\\ &=\left(-\frac{1}{\sqrt{5}} \left( \frac{1-\sqrt{5}}{2}\right)^{n+1}+\frac{1}{\sqrt{5}}\left( \frac{1+\sqrt{5}}{2}\right) \left( \frac{1-\sqrt{5}}{2}\right)^n\right)\left(\frac{1}{\sqrt{5}} \left( \frac{1+\sqrt{5}}{2}\right)^{n+1}-\frac{1}{\sqrt{5}}\left( \frac{1-\sqrt{5}}{2}\right) \left( \frac{1+\sqrt{5}}{2}\right)^n\right)\end{aligned}\]
\[F^{2}_{n+1}-F_n F_{n+2}= \frac{1}{5} (-1)^{n}\left(-\left( \frac{1-\sqrt{5}}{2}\right)+\left(\frac{1+\sqrt{5}}{2} \right) \right) \left(\left(\frac{1+\sqrt{5}}{2} \right)-\left(\frac{1-\sqrt{5}}{2} \right) \right)\]
\[\therefore F^{2}_{n+1}-F_n F_{n+2}= (-1)^n\mbox{ where }n\in\mathbb{Z}^+\]
 

Similar threads

  • · Replies 11 ·
Replies
11
Views
3K
  • · Replies 4 ·
Replies
4
Views
2K
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
3K
Replies
1
Views
1K
Replies
1
Views
3K
  • · Replies 4 ·
Replies
4
Views
3K
  • · Replies 4 ·
Replies
4
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K