MHB Can we take limits to infinity in finite sets of $\Bbb{N}$?

ozkan12
Messages
145
Reaction score
0
İn a finite set, can we take limit to $\infty$ ?

Also, can you give an example related to infinite subset of $\Bbb{N}$ ?
 
Physics news on Phys.org
ozkan12 said:
İn a finite set, can we take limit to $\infty$ ?

Also, can you give an example related to infinite subset of $\Bbb{N}$ ?

The first question is not clear. For the second one, $2 \Bbb{N}$ which constitutes even integers is a an infinite subset.
 
Dear ZaidAlyafey,

Thank you for your attention...For second question odd numbers can be an example...İs there any examples anything else 2N and 2N+1
 
ozkan12 said:
Dear ZaidAlyafey,

Thank you for your attention...For second question odd numbers can be an example...İs there any examples anything else 2N and 2N+1

Yes. For example, the set of prime numbers is infinite. More generally, any sequence $\{a_i\}^{\infty}_1$ where $a_i \in \mathbb{N}$ is an infinite subset of natural numbers.
 
Namaste & G'day Postulate: A strongly-knit team wins on average over a less knit one Fundamentals: - Two teams face off with 4 players each - A polo team consists of players that each have assigned to them a measure of their ability (called a "Handicap" - 10 is highest, -2 lowest) I attempted to measure close-knitness of a team in terms of standard deviation (SD) of handicaps of the players. Failure: It turns out that, more often than, a team with a higher SD wins. In my language, that...
Hi all, I've been a roulette player for more than 10 years (although I took time off here and there) and it's only now that I'm trying to understand the physics of the game. Basically my strategy in roulette is to divide the wheel roughly into two halves (let's call them A and B). My theory is that in roulette there will invariably be variance. In other words, if A comes up 5 times in a row, B will be due to come up soon. However I have been proven wrong many times, and I have seen some...

Similar threads

Back
Top