Can You Crack This Vector Identity Challenge?

  • Context: Undergrad 
  • Thread starter Thread starter Euge
  • Start date Start date
Click For Summary
SUMMARY

The vector identity challenge presented is to prove the equation $$\nabla(\mathbf{A}\cdot \mathbf{B}) = (\mathbf{A}\cdot \nabla)\mathbf{B} + (\mathbf{B}\cdot \nabla)\mathbf{A} + \mathbf{A}\times (\nabla \times \mathbf{B}) + \mathbf{B}\times (\nabla \times \mathbf{A})$$. This identity involves vector calculus and requires the application of the epsilon tensor and the epsilon-delta identity for a comprehensive solution. Despite the complexity, no participants provided answers this week, indicating a potential gap in understanding or engagement with the topic.

PREREQUISITES
  • Vector calculus fundamentals
  • Epsilon tensor notation
  • Understanding of the gradient operator (∇)
  • Knowledge of cross product and divergence
NEXT STEPS
  • Study the application of the epsilon tensor in vector identities
  • Learn about the properties of the gradient operator in vector calculus
  • Explore the divergence and curl operations in depth
  • Practice solving vector identities using various methods
USEFUL FOR

Mathematicians, physics students, and anyone interested in advanced vector calculus and identity proofs will benefit from this discussion.

Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Prove the vector identity

$$\nabla(\mathbf{A}\cdot \mathbf{B}) = (\mathbf{A}\cdot \nabla)\mathbf{B} + (\mathbf{B}\cdot \nabla)\mathbf{A} + \mathbf{A}\times (\nabla \times \mathbf{B}) + \mathbf{B}\times (\nabla \times \mathbf{A})$$

-----

Remember to read the https://mathhelpboards.com/showthread.php?772-Problem-of-the-Week-%28POTW%29-Procedure-and-Guidelines to find out how to https://mathhelpboards.com/forms.php?do=form&fid=2!
 
Physics news on Phys.org
For a hint, use the epsilon tensor and the epsilon-delta identity.
 
No one answered this week’s problem. You can read my solution below.
Using Einstein notation, the $j$th component of $\nabla(\mathbf{A}\cdot \mathbf{B})$ is $$\partial_j(A^iB_i) = \delta_j^{\mu} \delta^{\nu}_{i} \partial_{\mu}(A^i B_{\nu}) = \delta_j^{\mu} \delta_i^\nu (\partial_{\mu} A^i)B_\nu + \delta_j^{\mu} \delta_i^{\nu} A_i \partial_{\mu} B^\nu$$
By the epsilon-delta identity, $$\delta_j^{\mu} \delta_i^\nu = \delta_{j}^{\mu} \delta_{\nu}^i = \epsilon^{\mu i k}\epsilon_{j\nu k} + \delta^{\mu}_{\nu} \delta^i_j$$
Thus $$\delta_j^{\mu} \delta_i^{\nu} (\partial_{\mu} A_i)B_{\nu} = \epsilon_{j\nu k}(\epsilon^{\mu i k}\partial_{\mu} A^i)B_{\nu} + \delta^{\mu}_{\nu} \delta^i_j (\partial_{\mu} A^i)B_{\nu} = \epsilon_{j\nu k} B_{\nu}(\nabla \times \mathbf{A})^k + B_{\mu}\partial_{\mu} A^j$$which is the $j$th component of the sum $$\mathbf{B}\times (\nabla \times \mathbf{A}) + (\mathbf{B}\cdot \nabla)\mathbf{A}$$ Similarly, $\delta_j^{\mu}\delta_i^{\nu} A_i \partial_{\mu}B^{\nu}$ is the $j$th component of the sum $\mathbf{A}\times(\nabla \times \mathbf{B}) + (\mathbf{A}\cdot \nabla)\mathbf{B}$ The result now follows.
 

Similar threads

  • · Replies 1 ·
Replies
1
Views
3K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 2 ·
Replies
2
Views
4K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
5K
  • · Replies 1 ·
Replies
1
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K