MHB Can You Evaluate This Tricky Improper Integral?

  • Thread starter Thread starter Euge
  • Start date Start date
Click For Summary
The discussion revolves around evaluating the improper integral $$\int_0^\infty \left(\frac{\sin ax}{x}\right)^2\, dx$$ using contour integration techniques. Despite the complexity of the problem, no participants provided solutions or insights. The original poster has shared their own solution for reference. The integral is significant in mathematical analysis, particularly in the context of Fourier transforms and signal processing. The thread highlights the challenge of engaging with advanced mathematical concepts in forum discussions.
Euge
Gold Member
MHB
POTW Director
Messages
2,072
Reaction score
245
Here is this week's POTW:

-----
Using the method of contour integration or otherwise, evaluate the improper integral $$\int_0^\infty \left(\frac{\sin ax}{x}\right)^2\, dx$$ where $a$ is a positive constant.

-----

 
Physics news on Phys.org
No one answered this week's problem. You can read my solution below.

Consider the contour integral $$\oint_\Gamma \frac{1 - e^{2aiz}}{z^2}\, dz$$ where $\Gamma$ is a semicircular contour of radius $R$ with an $\epsilon$-bump above the origin. In the upper half plane, the integrand is $O(\vert z\rvert^{-2})$ so that the integral of $(1 - e^{2aiz})/z^2$ along the semicircular arc of radius $R$ is $O(1/R)$ as $R \to \infty$. Since the integrand has principal part $-2ai/z$ about the origin, its integral over the $\epsilon$-bump is $-\pi i(-2ai) + O(\epsilon) = -2\pi a + O(\epsilon)$ as $\epsilon \to 0$. By Cauchy's theorem the contour integral is trivial, so in the limit as $R \to \infty$ and $\epsilon \to \infty$ we obtain $$0 = \operatorname{P.V.} \int_{-\infty}^\infty \frac{1-e^{2aix}}{x^2}\, dx - 2\pi a$$ or $$\operatorname{P.V.}\int_{-\infty}^\infty \frac{1-e^{2aix}}{x^2}\, dx = 2\pi a$$ Taking the real part and dividing by two yields $$\int_{-\infty}^\infty \frac{1-\cos(2ax)}{2x^2}\, dx = \pi a$$ By the trig identity $(1 - \cos(2ax))/2 = \sin^2 (ax)$ and symmetry we deduce $$\int_0^\infty \left(\frac{\sin ax}{x}\right)^2\, dx = \frac{\pi a}{2}$$