MHB Can you prove \tan 20^{\circ}+4 \sin 20^{\circ}=\sqrt{3}?

Click For Summary
The discussion centers around proving the equation tan 20° + 4 sin 20° = √3. The proof involves using trigonometric identities and simplifications, ultimately showing that tan 20° can be expressed in terms of sin 20°. The calculations demonstrate that tan 60° equals √3, confirming the original equation. Participants express appreciation for each other's methods in solving the problem. The conversation highlights the collaborative nature of mathematical problem-solving.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Prove that $$\tan 20^{\circ}+4 \sin 20^{\circ}=\sqrt{3}$$.
 
Mathematics news on Phys.org
anemone said:
Prove that $$\tan 20^{\circ}+4 \sin 20^{\circ}=\sqrt{3}$$.

we have tan 60 - tan 20
=sin 60/cos 60 - sin 20/cos 20
= (sin 60 cos 20 - cos 60 sin 20)/ ( cos 60 cos 20)
= sin (60-20)/ (cos 60 cos 20)
= sin 40/ ( cos 60 cos 20)
= (2 sin 20 cos 20)/( cos 60 cos 20)
= 2 sin 20 / cos 60
= 2 sin 20/ (1/2) = 4 sin 20

hence 4 sin 20 + tan 20 = tan 60 = 3^(1/2)
 
kaliprasad said:
we have tan 60 - tan 20
=sin 60/cos 60 - sin 20/cos 20
= (sin 60 cos 20 - cos 60 sin 20)/ ( cos 60 cos 20)
= sin (60-20)/ (cos 60 cos 20)
= sin 40/ ( cos 60 cos 20)
= (2 sin 20 cos 20)/( cos 60 cos 20)
= 2 sin 20 / cos 60
= 2 sin 20/ (1/2) = 4 sin 20

hence 4 sin 20 + tan 20 = tan 60 = 3^(1/2)

Thanks for participating, kaliprasad and I like your method in cracking this problem so much!
 
anemone said:
Thanks for participating, kaliprasad and I like your method in cracking this problem so much!

Thanks anemone. As long as you ask questions whether I answer or not I shall not get Alzheimer's disease.
 
I have been insisting to my statistics students that for probabilities, the rule is the number of significant figures is the number of digits past the leading zeros or leading nines. For example to give 4 significant figures for a probability: 0.000001234 and 0.99999991234 are the correct number of decimal places. That way the complementary probability can also be given to the same significant figures ( 0.999998766 and 0.00000008766 respectively). More generally if you have a value that...

Similar threads

  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 5 ·
Replies
5
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 1 ·
Replies
1
Views
1K