Can You Prove That $\tan 50^{\circ}>1.18$ Without a Calculator?

Click For Summary

Discussion Overview

The discussion centers around proving that $\tan 50^{\circ} > 1.18$ without using a calculator. Participants explore various mathematical approaches, including series expansions, to establish this inequality.

Discussion Character

  • Exploratory, Mathematical reasoning, Debate/contested

Main Points Raised

  • One participant suggests using the first eight terms of the McLaurin series for $\tan x$, proposing that by substituting $x = \frac{5}{18}\pi$, the approximation yields $\tan x \sim 1.182468$, which supports the claim that $\tan 50^{\circ} > 1.18$.
  • Another participant acknowledges the proposed solution and encourages further contributions, indicating that multiple methods may exist to prove the inequality.

Areas of Agreement / Disagreement

While one approach has been presented, there is no consensus on a definitive method, and the discussion remains open for additional solutions and perspectives.

Contextual Notes

The discussion does not resolve the validity of the approximation or the assumptions underlying the McLaurin series application. The effectiveness of alternative methods remains unspecified.

anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Without the help of calculator, show that $\tan 50^{\circ}>1.18$
 
Mathematics news on Phys.org
anemone said:
Without the help of calculator, show that $\tan 50^{\circ}>1.18$

[sp]Considering the first eight of the McLaurin series of the function tan x...

$\displaystyle \tan x \sim x + \frac{1}{3}\ x^{3} + \frac{2}{15}\ x^{5} + \frac {17}{315}\ x^{7}\ (1)$... setting in (1) $x = \frac{5}{18}\ \pi$ You obtain... $\displaystyle \tan x \sim 1.182468$[/sp]

Kind regards

$\chi$ $\sigma$
 
chisigma said:
[sp]Considering the first eight of the McLaurin series of the function tan x...

$\displaystyle \tan x \sim x + \frac{1}{3}\ x^{3} + \frac{2}{15}\ x^{5} + \frac {17}{315}\ x^{7}\ (1)$... setting in (1) $x = \frac{5}{18}\ \pi$ You obtain... $\displaystyle \tan x \sim 1.182468$[/sp]

Kind regards

$\chi$ $\sigma$

Thanks for participating, chisigma and I think your solution is a good one! :o

I still welcome others to give a stab at it, as I can tell there is other way(perhaps many other ways) to prove the inequality to be true.
 
I will omit the degree sign ($^\circ$) in the proof. Note
\[
\tan 150 = \tan (180 - 30) = \frac{\tan 180 - \tan 30}{1 + \tan 180 \tan 30} = -\frac{1}{\sqrt{3}}.
\]
We will use the formula:
\[
\tan 3a = \frac{3 \tan a - \tan^3 a}{1 - 3 \tan^2 a}.
\]
So we have:
\[
-\frac{1}{\sqrt{3}} = \tan 150 = \tan (50 \cdot 3) = \frac{3 \tan 50 - \tan^3 50}{1 - 3 \tan^2 50}
\]
Let $x = \tan 50$, that equation becomes:
\[
-\frac{1}{\sqrt{3}} = \frac{3 x- x^3}{1 - 3x^2} \Longrightarrow 3x^3 + 3\sqrt{3} x^2 - 9x - \sqrt{3} = 0.
\]

Define $f(x) := 3x^3 + 3\sqrt{3} x^2 - 9x - \sqrt{3}$, note that $\sqrt{3} > 1.7$.
$f(\sqrt{3}) = 9\sqrt{3} + 9\sqrt{3} - 9\sqrt{3} - \sqrt{3} > 9(1.7) - \sqrt{3} > 0$.

We can rewrite $f$ as $x(3x(x+\sqrt{3})-9)-\sqrt{3}$, so
$f(1.18) = 1.18(1.18\cdot 3(1.18+\sqrt{3})-9)-\sqrt{3} < 0$. By IVT, there is some $x \in (1.18,\sqrt{3})$
where $f(x) = 0$. So, $\tan 50 > 1.18$. Note that over the range $[0,\frac{\pi}{2})$, $\tan(\cdot)$ is monotonically
increasing, so if there is a root in that interval, it is unique.
 
\[tan(50) = tan(\frac{\pi}{4}+\frac{\pi}{36})=\frac{1+tan(
\frac{\pi}{36})}{1-tan(\frac{\pi}{36})} \\\\ tan(x)\approx x + \frac{1}{3}x^3 +...\;\; (MacLaurin \;series) \; gives: tan(x) > x \;\;for\;\; small\;\;positive \;\;x \\\\ Thus, I get: \\\\ tan(50) > \frac{1+\frac{\pi}{36}}{1-\frac{\pi}{36}}=\frac{36+\pi}{36-\pi}> \frac{36+3}{36-3}=39/33=13/11\approx 1.18\]
 
Hi magneto and lfdahl,

Thanks for the solution and participation to my challenge problem!:)

A solution I saw that is provided by other:

$\tan 50^{\circ}=\tan (45^{\circ}+5^{\circ})=\dfrac{\tan45^{\circ}+\tan5^{\circ}}{1-\tan45^{\circ}\tan5^{\circ}}=\dfrac{1+\tan5^{\circ}}{1-\tan5^{\circ}}$

But note that $\tan 5^{\circ}=\tan \left( \dfrac{\pi}{36} \right) >\dfrac{\pi}{36}>\dfrac{3}{36}=\dfrac{1}{12}$ which gives

$1+\tan 5^{\circ}>\dfrac{13}{12}$ and $\dfrac{1}{1-\tan 5^{\circ}}>\dfrac{12}{11}$

This implies $\dfrac{1+\tan5^{\circ}}{1-\tan5^{\circ}}>\dfrac{13}{11}$ so $\tan 50^{\circ}>\dfrac{13}{11}>1.18$
 

Similar threads

  • · Replies 2 ·
Replies
2
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
1K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 3 ·
Replies
3
Views
2K
  • · Replies 1 ·
Replies
1
Views
1K
  • · Replies 2 ·
Replies
2
Views
2K
  • · Replies 4 ·
Replies
4
Views
2K
  • · Replies 1 ·
Replies
1
Views
2K