MHB Can You Prove That $\tan 50^{\circ}>1.18$ Without a Calculator?

AI Thread Summary
The discussion centers on proving that $\tan 50^{\circ} > 1.18$ without a calculator. A participant presents a solution using the first eight terms of the McLaurin series for the tangent function, which approximates $\tan \left(\frac{5}{18} \pi\right)$ to be approximately 1.182468. This approximation confirms that $\tan 50^{\circ}$ exceeds 1.18. Other participants express interest in exploring alternative methods to demonstrate the inequality. The conversation emphasizes the validity of the McLaurin series approach while inviting further contributions.
anemone
Gold Member
MHB
POTW Director
Messages
3,851
Reaction score
115
Without the help of calculator, show that $\tan 50^{\circ}>1.18$
 
Mathematics news on Phys.org
anemone said:
Without the help of calculator, show that $\tan 50^{\circ}>1.18$

[sp]Considering the first eight of the McLaurin series of the function tan x...

$\displaystyle \tan x \sim x + \frac{1}{3}\ x^{3} + \frac{2}{15}\ x^{5} + \frac {17}{315}\ x^{7}\ (1)$... setting in (1) $x = \frac{5}{18}\ \pi$ You obtain... $\displaystyle \tan x \sim 1.182468$[/sp]

Kind regards

$\chi$ $\sigma$
 
chisigma said:
[sp]Considering the first eight of the McLaurin series of the function tan x...

$\displaystyle \tan x \sim x + \frac{1}{3}\ x^{3} + \frac{2}{15}\ x^{5} + \frac {17}{315}\ x^{7}\ (1)$... setting in (1) $x = \frac{5}{18}\ \pi$ You obtain... $\displaystyle \tan x \sim 1.182468$[/sp]

Kind regards

$\chi$ $\sigma$

Thanks for participating, chisigma and I think your solution is a good one! :o

I still welcome others to give a stab at it, as I can tell there is other way(perhaps many other ways) to prove the inequality to be true.
 
I will omit the degree sign ($^\circ$) in the proof. Note
\[
\tan 150 = \tan (180 - 30) = \frac{\tan 180 - \tan 30}{1 + \tan 180 \tan 30} = -\frac{1}{\sqrt{3}}.
\]
We will use the formula:
\[
\tan 3a = \frac{3 \tan a - \tan^3 a}{1 - 3 \tan^2 a}.
\]
So we have:
\[
-\frac{1}{\sqrt{3}} = \tan 150 = \tan (50 \cdot 3) = \frac{3 \tan 50 - \tan^3 50}{1 - 3 \tan^2 50}
\]
Let $x = \tan 50$, that equation becomes:
\[
-\frac{1}{\sqrt{3}} = \frac{3 x- x^3}{1 - 3x^2} \Longrightarrow 3x^3 + 3\sqrt{3} x^2 - 9x - \sqrt{3} = 0.
\]

Define $f(x) := 3x^3 + 3\sqrt{3} x^2 - 9x - \sqrt{3}$, note that $\sqrt{3} > 1.7$.
$f(\sqrt{3}) = 9\sqrt{3} + 9\sqrt{3} - 9\sqrt{3} - \sqrt{3} > 9(1.7) - \sqrt{3} > 0$.

We can rewrite $f$ as $x(3x(x+\sqrt{3})-9)-\sqrt{3}$, so
$f(1.18) = 1.18(1.18\cdot 3(1.18+\sqrt{3})-9)-\sqrt{3} < 0$. By IVT, there is some $x \in (1.18,\sqrt{3})$
where $f(x) = 0$. So, $\tan 50 > 1.18$. Note that over the range $[0,\frac{\pi}{2})$, $\tan(\cdot)$ is monotonically
increasing, so if there is a root in that interval, it is unique.
 
\[tan(50) = tan(\frac{\pi}{4}+\frac{\pi}{36})=\frac{1+tan(
\frac{\pi}{36})}{1-tan(\frac{\pi}{36})} \\\\ tan(x)\approx x + \frac{1}{3}x^3 +...\;\; (MacLaurin \;series) \; gives: tan(x) > x \;\;for\;\; small\;\;positive \;\;x \\\\ Thus, I get: \\\\ tan(50) > \frac{1+\frac{\pi}{36}}{1-\frac{\pi}{36}}=\frac{36+\pi}{36-\pi}> \frac{36+3}{36-3}=39/33=13/11\approx 1.18\]
 
Hi magneto and lfdahl,

Thanks for the solution and participation to my challenge problem!:)

A solution I saw that is provided by other:

$\tan 50^{\circ}=\tan (45^{\circ}+5^{\circ})=\dfrac{\tan45^{\circ}+\tan5^{\circ}}{1-\tan45^{\circ}\tan5^{\circ}}=\dfrac{1+\tan5^{\circ}}{1-\tan5^{\circ}}$

But note that $\tan 5^{\circ}=\tan \left( \dfrac{\pi}{36} \right) >\dfrac{\pi}{36}>\dfrac{3}{36}=\dfrac{1}{12}$ which gives

$1+\tan 5^{\circ}>\dfrac{13}{12}$ and $\dfrac{1}{1-\tan 5^{\circ}}>\dfrac{12}{11}$

This implies $\dfrac{1+\tan5^{\circ}}{1-\tan5^{\circ}}>\dfrac{13}{11}$ so $\tan 50^{\circ}>\dfrac{13}{11}>1.18$
 
Suppose ,instead of the usual x,y coordinate system with an I basis vector along the x -axis and a corresponding j basis vector along the y-axis we instead have a different pair of basis vectors ,call them e and f along their respective axes. I have seen that this is an important subject in maths My question is what physical applications does such a model apply to? I am asking here because I have devoted quite a lot of time in the past to understanding convectors and the dual...
Fermat's Last Theorem has long been one of the most famous mathematical problems, and is now one of the most famous theorems. It simply states that the equation $$ a^n+b^n=c^n $$ has no solutions with positive integers if ##n>2.## It was named after Pierre de Fermat (1607-1665). The problem itself stems from the book Arithmetica by Diophantus of Alexandria. It gained popularity because Fermat noted in his copy "Cubum autem in duos cubos, aut quadratoquadratum in duos quadratoquadratos, et...
Insights auto threads is broken atm, so I'm manually creating these for new Insight articles. In Dirac’s Principles of Quantum Mechanics published in 1930 he introduced a “convenient notation” he referred to as a “delta function” which he treated as a continuum analog to the discrete Kronecker delta. The Kronecker delta is simply the indexed components of the identity operator in matrix algebra Source: https://www.physicsforums.com/insights/what-exactly-is-diracs-delta-function/ by...

Similar threads

Back
Top