I will omit the degree sign ($^\circ$) in the proof. Note
\[
\tan 150 = \tan (180 - 30) = \frac{\tan 180 - \tan 30}{1 + \tan 180 \tan 30} = -\frac{1}{\sqrt{3}}.
\]
We will use the formula:
\[
\tan 3a = \frac{3 \tan a - \tan^3 a}{1 - 3 \tan^2 a}.
\]
So we have:
\[
-\frac{1}{\sqrt{3}} = \tan 150 = \tan (50 \cdot 3) = \frac{3 \tan 50 - \tan^3 50}{1 - 3 \tan^2 50}
\]
Let $x = \tan 50$, that equation becomes:
\[
-\frac{1}{\sqrt{3}} = \frac{3 x- x^3}{1 - 3x^2} \Longrightarrow 3x^3 + 3\sqrt{3} x^2 - 9x - \sqrt{3} = 0.
\]
Define $f(x) := 3x^3 + 3\sqrt{3} x^2 - 9x - \sqrt{3}$, note that $\sqrt{3} > 1.7$.
$f(\sqrt{3}) = 9\sqrt{3} + 9\sqrt{3} - 9\sqrt{3} - \sqrt{3} > 9(1.7) - \sqrt{3} > 0$.
We can rewrite $f$ as $x(3x(x+\sqrt{3})-9)-\sqrt{3}$, so
$f(1.18) = 1.18(1.18\cdot 3(1.18+\sqrt{3})-9)-\sqrt{3} < 0$. By IVT, there is some $x \in (1.18,\sqrt{3})$
where $f(x) = 0$. So, $\tan 50 > 1.18$. Note that over the range $[0,\frac{\pi}{2})$, $\tan(\cdot)$ is monotonically
increasing, so if there is a root in that interval, it is unique.